A study of composition effects on bandgaps on a series

of new alkali metal aluminum/gallium iodates

Jian-Han Zhang,^{+[a,c]} Qi Wu,^{+*b} Wen-Zhong Lai,^a

a. School of Resources & Chemical Engineering, Sanming University, Sanming, 365004, P. R. China

b. College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China.

c. Institute for Advanced Materials and School of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, P. R. China.

Corresponding author: Qi Wu

E-mail: wuqi2011@whu.edu.cn

[⁺] These authors contributed equally

Atom	Symmetry	X	x y z U _(eq) C						
$K_2AI(IO_3)_4(H_{0.5}IO_3)_2$									
K1	2i	8278.8(17)	3406.8(17)	8148.0(18)	20.9(2)	1			
Al1	lf	5000	10000	5000	8.5(4)	1			
11	<i>2i</i>	6929.1(4)	8292.7(4)	1484.0(4)	8.36(7)	1			
12	2i	3377.1(4)	6444.7(4)	7119.2(4)	8.64(8)	1			
13	2i	8660.8(4)	8122.4(4)	6591.6(4)	9.96(8)	1			
01	2i	5486(5)	8078(5)	3253(5)	14.1(7)	1			
02	2 <i>i</i>	9080(5)	8787(6)	2965(5)	17.7(8)	1			
O3	2i	6902(6)	5911(5)	725(5)	16.9(8)	1			
O4	2i	3341(5)	8259(5)	5763(5)	15.4(7)	1			
O5	2i	949(5)	5893(5)	6888(6)	15.8(7)	1			
O6	2i	3833(5)	7922(5)	9292(5)	16.7(8)	1			
07	<i>2i</i>	6962(5)	9682(5)	6703(5)	13.5(7)	1			
O8	<i>2i</i>	7118(5)	6072(5)	6343(6)	16.7(8)	1			
O9	<i>2i</i>	9256(5)	8480(5)	9085(5)	16.0(7)	1			
H9	<i>2i</i>	9722.74	9530.36	9461	24	0.5			
		Rb ₂	$_{2}AI(IO_{3})_{4}(H_{0.5}IO_{3})$)2					
Rb1	<i>2i</i>	8359.0(8)	8225.7(8)	-1552.5(8)	17.42(14)	1			
Al1	lf	5000	5000	5000	6.9(4)	1			
11	<i>2i</i>	3393.2(4)	7082.8(4)	1476.2(4)	7.89(9)	1			
12	<i>2i</i>	3087.9(4)	8490.2(4)	6681.4(4)	7.65(9)	1			
13	2 <i>i</i>	8641.0(5)	6587.3(5)	3153.3(5)	9.94(10)	1			
01	2 <i>i</i>	3379(5)	5725(6)	3250(5)	14.3(8)	1			
O2	<i>2i</i>	1008(5)	6890(6)	990(6)	17.6(9)	1			
O3	<i>2i</i>	3892(6)	9231(6)	2926(6)	18.0(9)	1			
O4	<i>2i</i>	4537(5)	6764(5)	6855(5)	12.5(8)	1			
O5	2 <i>i</i>	3100(6)	9178(5)	9028(5)	15.7(9)	1			
O6	<i>2i</i>	968(5)	6980(6)	6169(6)	19.1(9)	1			
07	<i>2i</i>	6978(5)	6682(5)	4686(5)	13.1(8)	1			
O8	<i>2i</i>	7123(5)	6327(6)	1123(5)	18.2(9)	1			
O9	<i>2i</i>	9207(6)	9059(5)	3436(6)	16.5(9)	1			
H9	<i>2i</i>	9695.05	9455.62	4457.83	25	0.5			
K ₂ Ga(IO ₃) ₄ (H _{0.5} IO ₃) ₂									
K1	<i>2i</i>	1709.6(16)	11599.2(16)	1846.9(16)	20.9(2)	1			
Al1	lf	5000	5000	5000	9.45(16)	1			
14	2 <i>i</i>			0070 0(4)	0.00/0	1			
f1		0045.2(4)	8587.9(4)	2810.6(4)	9.60(9)				
12	2 <i>i</i>	6936.9(4)	3276.6(4)	1452.1(4)	9.31(9)	1			
13	<i>2i</i>	1305.6(4)	6894.9(4)	3390.0(4)	10.96(9)	1			

Table S1. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2$ ×10³) for A₂M(IO₃)₄(H_{0.5}IO₃)₂ (A=K, Rb; M=AI, Ga).

O1	2i	6745(4)	6821(5)	4259(5)	15.5(7)	1				
O2	2 <i>i</i>	9052(4)	9150(5)	3093(5)	16.5(8)	1				
O3	2 <i>i</i>	6162(5)	7079(5)	720(5)	17.4(8)	1				
O4	2 <i>i</i>	5474(5)	3022(5)	3195(5)	15.8(7)	1				
O5	2 <i>i</i>	9054(5)	3776(5)	2964(5)	17.3(8)	1				
O6	2 <i>i</i>	6930(5)	905(5)	675(5)	17.2(8)	1				
07	2 <i>i</i>	2972(4)	5316(5)	3223(5)	14.9(7)	1				
O8	2 <i>i</i>	2860(5)	8931(5)	3658(5)	16.8(8)	1				
O9	2 <i>i</i>	690(5)	6596(5)	905(4)	16.5(8)	1				
H9	2i	269.03	5538.96	499.89	25	0.5				
		Rb ₂ 0	Ga(IO ₃) ₄ (H _{0.5} IO ₃	3)2						
Rb1	2 <i>i</i>	8371(2)	8238(2)	3435(2)	21.6(4)	1				
Al1	lf	5000	5000	10000	11.1(5)	1				
11	2 <i>i</i>	3368.1(13)	7079.8(14)	6440.1(13)	12.0(3)	1				
12	2 <i>i</i>	6920.7(13)	1477.6(13)	8309.6(13)	11.7(3)	1				
13	2 <i>i</i>	8667.7(14)	6602.9(14)	8125.6(14)	14.2(3)	1				
01	2 <i>i</i>	3291(15)	5676(16)	8157(16)	16(2)	1				
O2	2 <i>i</i>	3879(17)	9216(17)	7936(15)	20(3)	1				
O3	2 <i>i</i>	962(16)	6873(19)	5888(18)	23(3)	1				
O4	2 <i>i</i>	5437(17)	3160(16)	8138(16)	18(3)	1				
O5	2 <i>i</i>	6900(17)	767(16)	5965(17)	19(3)	1				
O6	2 <i>i</i>	9008(17)	2994(18)	8860(20)	25(3)	1				
07	2 <i>i</i>	7019(16)	6723(17)	9665(16)	19(3)	1				
O8	2 <i>i</i>	7155(17)	6329(16)	6118(17)	20(3)	1				
O9	2 <i>i</i>	9270(18)	9086(17)	8418(18)	25(3)	1				
H9	2 <i>i</i>	9706.33	9484.25	9453.61	37	0.5				
	${}^{a}U_{(eq)}$ is defined as one-third of the trace of the orthogonalized U_{ii} tensor.									

Table S2. Selected Bond Lengths (Å) and Bond Angles (°) of $A_2M(IO_3)_4(H_{0.5}IO_3)_2$ (A=K, Rb; M=AI, Ga).

K ₂ Al(IO ₃) ₄ (H _{0.5} IO ₃) ₂		Rb ₂ Al(IO ₃) ₄ (H _{0.5} IO ₃) ₂		K ₂ Ga(IO ₃) ₄ (H _{0.5} IO ₃) ₂		Rb ₂ Ga(IO ₃) ₄ (H _{0.5} IO ₃) ₂		
Bond	Dist. (Å)	Bond	Dist. (Å)	Bond	Dist. (Å)	Bond	Dist. (Å)	
Al1–O1×2	1.893(4)	Al1–O1×2	1.910(4)	Ga1–O1×2	1.994(3)	Ga1–O1×2	1.987(11)	
Al1–04×2	1.914(4)	Al1–O4×2	1.895(4)	Ga1–O4×2	1.950(3)	Ga1–O4 ×2	1.935(11)	
Al1–07×2	1.908(4)	Al1–07×2	1.921(4)	Ga1–O7×2	1.979(3)	Ga1–O7 ×2	1.968(12)	
I1–O1	1.835(4)	11–01	1.838(4)	11–01	1.835(3)	11–01	1.832(12)	
l1–O2	1.823(4)	11–02	1.793(4)	11–02	1.799(3)	11–02	1.813(13)	
l1–O3	1.791(4)	I1–O3	1.802(4)	I1–O3	1.806(3)	l1–O3	1.818(12)	
12–04	1.844(4)	12–04	1.832(4)	12–04	1.842(3)	12–04	1.831(11)	
12–05	1.807(4)	12–05	1.791(4)	12–05	1.815(3)	12–05	1.798(13)	
1206	1.803(4)	12–06	1.829(4)	12–06	1.793(3)	12–06	1.812(13)	
13–07	1.829(4)	13–07	1.824(4)	13–07	1.831(3)	13–07	1.830(12)	
13–08	1.797(4)	I3–O8	1.795(4)	13–08	1.795(3)	13–08	1.782(13)	

13–09	1.860(4)	I3–O9	1.859(4)	13–09	1.859(3)	13–09	1.870(13)
K1–O1	2.932(4)	Rb1–O1	3.154(4)	K1–O1	3.038(4)	Rb1–O1	3.098(12)
K1–O2	2.834(4)	Rb1–O2	3.021(4)	K1–O2	2.923(4)	Rb1–O2	2.992(13)
K1–O3	2.851(4)	Rb1–O3	2.979(4)	K1–O3	2.901(4)	Rb1–O3	2.972(13)
K1–O4	3.074(4)	Rb1–O4	3.024(4)	K1–O4	2.919(4)	Rb1–O4	3.006(13)
K1–O5	2.941(4)	Rb1–O5	2.956(4)	K1–O5	2.852(4)	Rb1–O5	2.947(12)
K1–O6	2.879(4)	Rb1–O6	3.553(4)	K1–O6	2.832(4)	Rb1–O6	3.555(13)
K1–07	2.862(4)	Rb1–07	2.940(4)	K1–07	2.845(4)	Rb1–07	2.967(14)
K1–O8	2.776(4)	Rb1–O8	2.953(4)	K1–O8	2.785(4)	Rb1–O8	2.957(12)
K1–O9	3.247(4)	Rb1–O9	2.875(4)	K1–O9	3.181(4)	Rb1–O9	2.886(13)
Angle	(°)	Angle	(°)	Angle	(°)	Angle	(°)
02–11–01	96.75(18)	02–11–01	95.34(18)	02–11–01	94.42(15)	02–I1–O1	96.8(5)
02–11–03	99.65(19)	O2–I1–O3	100.7(2)	02–11–03	101.68(17)	02–11–03	101.6(6)
03–I1–O1	96.26(17)	O3–I1–O1	96.59(19)	03–11–01	96.40(16)	03–11–01	95.0(5)
05–12–04	95.34(17)	05–12–04	96.63(18)	05–12–04	96.55(16)	05–12–04	97.1(5)
05–12–06	101.32(19)	O5–I2–O6	99.2(2)	05–12–06	99.70(16)	05–12–06	100.4(6)
06–12–04	96.29(18)	06–12–04	96.73(18)	06–12–04	96.16(16)	06–12–04	97.6(6)
07–13–09	93.61(17)	07–13–09	94.17(18)	07–13–09	93.52(16)	07–13–09	93.9(6)
08–13–07	96.71(17)	O8–I3–O7	97.32(18)	08–13–07	96.88(16)	08–13–07	97.4(6)
08–13–09	97.37(18)	O8–I3–O9	96.08(19)	08–13–09	96.91(16)	O8–I3–O9	96.9(6)

Table S3. The calculated bond-valence sums for each atoms of $A_2M(IO_3)_4(H_{0.5}IO_3)_2$ (A=K, Rb; M=AI, Ga).

$K_2AI(IO_3)_4(H_{0.5}IO_3)_2$		Rb ₂ Al(IO ₃)	₄ (H _{0.5} IO ₃) ₂	K ₂ Ga(IO ₃) ₄ (H _{0.5} IO ₃) ₂		$Rb_2Ga(IO_3)_4(H_{0.5}IO_3)_2$	
atoms	BVS	atoms	BVS	atoms	BVS	atoms	BVS
K1	1.09	Rb1	1.18	К1	1.11	Rb1	1.26
Al1	3.02	Al1	2.99	Ga1	3.10	Ga1	3.20
11	4.87	11	5.01	11	4.97	11	4.87
12	4.97	12	4.92	12	4.93	12	4.97
13	4.81	13	4.81	13	4.78	13	4.81
01	-2.21	01	-2.14	01	-2.14	01	-2.18
O2	-1.81	02	-1.88	02	-1.84	02	-1.80
O3	-1.78	O3	-1.85	O3	-1.81	O3	-1.78
O4	-2.15	04	-2.22	04	-2.20	04	-2.29
O5	-1.84	O5	-1.91	O5	-1.79	O5	-1.88
O6	-1.79	06	-1.62	O6	-1.90	O6	-1.81
07	-2.22	07	-2.25	07	-2.23	07	-2.26
O8	-1.98	O8	-1.90	O8	-1.91	O8	-1.99
09	-1.47	09	-1.66	09	-1.52	09	-1.51

$K_2AI(IO_3)_4(H_{0.5}IO_3)_2$		Rb ₂ Al(IO ₃)	₄(H _{0.5} IO ₃) ₂	$K_2Ga(IO_3)_4(H_{0.5}IO_3)_2$		Rb ₂ Ga(IO ₃) ₄ (H _{0.5} IO ₃	
bond	Bond order	bond	Bond order	Bond	Bond order	Bond	Bond order
AI1-01	0.35	AI1-O1	0.33	Ga1-O1	0.33	Ga1-	0.34
Al1-04	0.32	Al1-04	0.35	Ga1-O4	0.38	Ga1-	0.38
AI1-07	0.35	Al1-07	0.35	Ga1-07	0.36	Ga1-	0.37
l1 - O1	0.26	l1 - 01	0.23	l1 - 01	0.23	11–01	0.22
l1 - O2	0.38	l1 - O2	0.45	l1 - O2	0.44	11–02	0.35
l1 - O3	0.43	l1 - O3	0.37	l1 - O3	0.35	I1–O3	0.45
l2 - O4	0.24	l2 - O4	0.24	l1 - 01	0.23	12–04	0.21
l2 - 05	0.44	l2 - O5	0.44	l2 - O5	0.34	12–05	0.43
l2 - 06	0.40	l2 - O6	0.35	l2 - O6	0.43	12–06	0.33
I3 - O7	0.22	13 - 07	0.21	13 - O8	0.34	13–07	0.20
I3 - O8	0.38	I3 - O8	0.35	13 - O8	0.34	13–08	0.34
I3 - O9	0.50	I3 - O9	0.49	13 - O9	0.47	I3–O9	0.48
K1 - O1	0.05	Rb1–O1	0.05	K1 - O1	0.06	Rb1–	0.06
K1 - O2	0.12	Rb1–O2	0.08	K1 - O2	0.08	Rb1–	0.10
K1 - O3	0.08	Rb1–O3	0.10	K1 - O3	0.11	Rb1–	0.08
K1 - O4	0.05	Rb1–O4	0.04	K1 - O4	0.06	Rb1–	0.05
K1 - O5	0.08	Rb1–O5	0.07	K1 - O5	0.10	Rb1–	0.05
K1 - O6	0.11	Rb1–O6	0.05	K1 - O6	0.07	Rb1–	0.05
K1 - 07	0.07	Rb1–07	0.10	K1 - 07	0.07	Rb1–	0.09
K1 - O8	0.12	Rb1–O8	0.06	K1 - O8	0.11	Rb1–	0.06
K1 - O9	0.04	Rb1–O9	0.10	K1 - O9	0.04	Rb1–	0.10

Table S4. Calculated bond orders of M-O, I-O, and A-O bonds of $HA_2MI_6O_{18}$ (A=K, Rb; M=AI, Ga).

Figure S1. XRD patterns of as-synthesized samples compare with single crystal simulated models of $K_2AI(IO_3)_4(H_{0.5}IO_3)_2$ (a), $Rb_2AI(IO_3)_4(H_{0.5}IO_3)_2$ (b), $K_2Ga(IO_3)_4(H_{0.5}IO_3)_2$ (c), and $Rb_2Ga(IO_3)_4(H_{0.5}IO_3)_2$ (d).

Figure S2. IR spectra of $K_2AI(IO_3)_4(H_{0.5}IO_3)_2$ (a), $Rb_2AI(IO_3)_4(H_{0.5}IO_3)_2$ (b), $K_2Ga(IO_3)_4(H_{0.5}IO_3)_2$ (c), and $Rb_2Ga(IO_3)_4(H_{0.5}IO_3)_2$ (d).

Figure S3. Calculated electronic band structure (left) and total and partial densities of states of $Rb_2Al(IO_3)_4(H_{0.5}IO_3)_2$ (right).

Figure S4. Calculated electronic band structure (left) and total and partial densities of states of $K_2Ga(IO_3)_4(H_{0.5}IO_3)_2$ (right).

Figure S5. Calculated electronic band structure (left) and total and partial densities of states of $Rb_2Ga(IO_3)_4(H_{0.5}IO_3)_2$ (right).