Electronic Supplementary Information(ESI)

Slow magnetic relaxation and water oxidation activity of dinuclear Co^{II}Co^{III} and unique triangular Co^{II}Co^{III} mixed-valence complexes

Ritwik Modak,^a Biswajit Mondal,^bYeasin Sikdar,^a Jayisha Banerjee,^a Enrique Colacio,*^c Itziar Oyarzábal,^d Joan Cano,*^e and Sanchita Goswami*^a

* Email: sgchem@caluniv.ac.in (S.G.).

* Email: ecolacio@ugr.es(E.C.).

* Email: joan.cano@uv.es(J.C.).

Table of Contents

	Page No.
Table S1 Results of Continuous Shape Measurement Analysis for the Co(II) & Co(III) coordination Spheres ^{<i>a</i>} of complex 1.	S3
Table S2 Results of Continuous Shape Measurement Analysis for the Co(II) and Co(III) coordination Spheres ^{<i>a</i>} of complex 2.	S3
Table S3 BVS Calculation data for cobalt centers in complex 1 and 2. ^a	S5
Fig. S1 1D-chain structure formed with intermolecular hydrogen bonds (above). Topology of chloro mediated water ribbon (below).	S5
Table S4 A selection of calculated parameters that defines the <i>zfs</i> tensor (<i>D</i> and <i>E</i> / <i>D</i> ratio), spin-spin (D_{SS}) and spin-orbit (D_{SO}) contribution to the axial component of zfs in 1 and 2 . Calculations were carried out on the wavefunction provided by the CASSCF method (see into Experimental Section).	S6
Fig. S2 Cole-Cole plots for temperatures between 2.4–4 K (above) and 4.2–5.2 K (below) of Complex 1 .	S6

^a. Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata – 700009, India.

^b Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin - 53706, United States.

^c Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, 18071-Granada, Spain.

^d.Departamento de Química Aplicada, Facultad de Química, UPV/EHU, Paseo Manuel Lardizabal, nº 3, 20018, Donostia-San Sebastián, Spain.

e-Fundació General de la Universitat de València (FGUV), Universitat de València, 46980 Paterna, València, Spain.

Fig. S3 Frequency dependence of the out-of-phase signal (χ''_M) in the 4.2 K-5.2 K temperature range of 1 . The solids lines correspond to the best-fitting to the Debye model	S7
Fig. S4 Cyclic voltammetry of the 0.5 mM of the complex at pH 7 phosphate buffer. ITO is used as working electrode, Ag/AgCl as reference electrode and Pt as counter electrode. The potential is adjusted to NHE.	S 8
Fig S5 The plot of catalytic peak current at pH 7 with respect to catalyst concentration.	S 8
Fig. S6 Absorption spectra of the complex 1 as a function of pH.	S9
Fig. S7 Cyclic voltammetry of the 0.5 mM of the complex 1 at pH 11 phosphate buffer. Inset: The initial cathodic scan under anaerobic conditions is marked in green arrow showing no trace of oxygen reduction. Glassy carbon electrode (GCE) is used as working electrode, Ag/AgCl as reference electrode and Pt as counter electrode. The potential is adjusted to NHE.	S9
Fig. S8 The charge vs time plot of the 0.5 mM of the catalyst at $pH7$ phosphate buffer. Constant electrode potential = 1.4 V vs NHE. ITO is used as working electrode, Ag/AgCl as reference electrode and Pt as counter electrode.	S10

Fig. S9 The absorption spectra of the complex before and after bulk electrolysisS10(1.4 V vs NHE) at *pH*7 phosphate buffer.

Shape analysis :Continuous Shape Measurement (CShM)^a of Co^{II} and Co^{III} coordination sphere using SHAPE v2.1.

Table S1 Results of Continuous Shape Measurement Analysis for the Co(II) & Co(III) coordination Spheres^{*a*} of complex 1.

 S H A P E v2.1 Continuous Shape Measures calculation
(c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: llunell@ub.edu

CoL6 structures

HP-6	1 D6h	Hexago	n						
PPY-6	PY-6 2 C5v Pentagonal pyramid								
OC-6	OC-6 3 Oh Octahedron								
TPR-6	TPR-6 4 D3h Trigonal prism								
JPPY-6	5 C5v	Johnso	n pentagoi	nal pyramid	J2				
Structure [M	IL6] HP	-6 P	PY-6	OC-6	TPR-6	JPPY-6			
Co1(III) cen	ter,	31.236,	28.474,	0.205,	15.492,	32.094			
	••••••	••••••	•••••	•••••	•••••	•••••			
Co2(II) cent	er, 25.78	82, 14	.801, 4	4.130, 8	.281, 18	.272			

Table S2 Results of Continuous Shape Measurement Analysis for the Co(II) and Co(III) coordination Spheres^{*a*} of complex 2.

Analysis of Co1(III) center:

S H A P Ev2.1Continuous Shape Measures calculation(c) 2013Electronic Structure Group, Universitat de Barcelona
Contact: llunell@ub.edu

CoL6 structures

HP-6	1 D6h Hexagon
PPY-6	2 C5v Pentagonal pyramid
OC-6	3 Oh Octahedron
TPR-6	4 D3h Trigonal prism

JPPY-6 5 C5v Johnson pentagonal pyramid J2

Structure [ML6]**HP-6 PPY-6 OC-6 TPR-6 JPPY-6** Co1(III) center, 31.912, 28.856, 0.233, 15.662, 32.514 *Analysis of Co2(II) center:*

SHAPE v2.1 Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: llunell@ub.edu _____ CoL6 structures HP-6 1 D6h Hexagon PPY-6 2 C5v Pentagonal pyramid 3 Oh Octahedron OC-6 TPR-6 4 D3h Trigonal prism 5 C5v Johnson pentagonal pyramid J2 JPPY-6 Structure [ML6]HP-6 **PPY-6 OC-6 TPR-6 JPPY-6** Co2(II) center, 34.485, 23.582, 2.114, 12.639, 28.317 CoL5 structures PP-5 1 D5h Pentagon 2 C4v Vacant octahedron vOC-5 TBPY-5 3 D3h Trigonalbipyramid 4 C4v Spherical square pyramid SPY-5 JTBPY-5 5 D3h Johnson trigonalbipyramid J12 Structure [ML5]PP-5 vOC-5 **TBPY-5** SPY-5 **JTBPY-5** 25.914, Co2(II) center, 1.102, 8.917 7.407, 2.015,

Analysis of Co3(II) center:

 S H A P E v2.1 Continuous Shape Measures calculation
(c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: llunell@ub.edu

CoL5 structures

PP-5	1 D5h	Pentagon
vOC-5	2 C4v	Vacant octahedron
TBPY-5	3 D3h	Trigonalbipyramid
SPY-5	4 C4v	Spherical square pyramid
JTBPY-5	5 D3h	Johnson trigonalbipyramid J12

Structure [ML5]]	PP-5 v	OC-5	TBPY-5	SPY-5	JTBPY-5
Co3(II) Center,	32.034,	5.771,	1.418,	4.063,	4.091

Table S3 BVS Calculation data for cobalt centers in complex 1 and 2.	. <i>a</i>
--	------------

	Complex 1			Complex 2	
	$R_0(\mathrm{Co}^{\mathrm{III}})$	$R_0(\mathrm{Co^{II}})$		$R_0(\mathrm{Co}^{\mathrm{III}})$	$R_0(\mathrm{Co^{II}})$
Co(1)	<u>3.198</u>	3.258	Co(1)	<u>3.263</u>	3.220
Co(2)	1.672	<u>1.904</u>	Co(2)	1.985	<u>2.071</u>
			- Co(3)	1.872	<u>1.889</u>

^{*a*}The underlined value is the closest to the charge for which it was calculated.

Fig. S1 1D-chain structure formed with intermolecular hydrogen bonds (above). Topology of chloro mediated water ribbon (below).

Table S4 A selection of calculated parameters that defines the *zfs* tensor (*D* and *E/D* ratio), spinspin (D_{SS}) and spin-orbit (D_{SO}) contribution to the axial component of zfs in 1 and 2. Calculations were carried out on the wavefunction provided by the CASSCF method (see into Experimental Section).

Compound	D^{a}	$\boldsymbol{D}_{\mathbf{SS}}^{a}$	D_{SO}^{a}	E/D	$S_{\rm eff} = 1/2^{\rm b}$			
					g_1	g_2	g_3	
1 [Co ^{II} Co ^{III}]	+44.0	+0.6	+43.9	0.185	2.028	3.842	6.245	
1 [Co ^{II} Ga ^{III}]	+43.3	+0.6	+43.2	0.188	2.027	3.835	6.240	
2 [Co2]	+63.1	-0.6	+63.4	0.208	2.183	4.230	6.130	
2 [Co3]	-23.2	+0.5	-23.0	0.084	7.567	0.647	0.600	

^c in cm⁻¹. ^b The directions of the components of the Landé factor (g_i) are not assigned directly in the theoretical calculation, but the positive

value of D and the magnitude of the components allows concluding that $g_x = g_2$, $g_y = g_3$ and $g_z = g_1$.

Fig. S2 Cole-Cole plots for temperatures between 2.4–4 K (above) and 4.2–5.2 K (below) of Complex 1.

Fig. S3 Frequency dependence of theout-of-phase signal (χ''_M) in the 4.2 K-5.2 K temperature range of **1**. The solids lines correspond to the best-fitting to the Debye model.

Fig. S4 Cyclic voltammetry of the 0.5 mM of the complex at pH 7 phosphate buffer. ITO is used as working electrode, Ag/AgCl as reference electrode and Pt as counter electrode. The potential is adjusted to NHE.

Fig. S5 The plot of catalytic peak current at *pH* 7 with respect to catalyst concentration.

Fig. S6 Absorption spectra of the complex 1 as a function of pH.

Fig. S7 Cyclic voltammetry of the 0.5 mM of the complex **1** at pH 11 phosphate buffer. Inset: The initial cathodic scan under anaerobic conditions is marked in green arrow showing no trace of oxygen reduction. Glassy carbon electrode (GCE) is used as working electrode, Ag/AgCl as reference electrode and Pt as counter electrode. The potential is adjusted to NHE.

Fig. S8 The charge vs time plot of the 0.5 mM of the catalyst at *pH*7 phosphate buffer. Constant electrode potential = 1.4 V vs NHE. ITO is used as working electrode, Ag/AgCl as reference electrode and Pt as counter electrode.

Fig. S9 The absorption spectra of the complex before and after bulk electrolysis (1.4 V vs NHE) at pH7 phosphate buffer.