Supporting information

Aerobic oxidation of primary benzylic amines to amides and nitriles

catalyzed by ruthenium carbonyl clusters carrying N,O-bidentate

ligands

Xinlong Yan,^{*a*}[‡] Qing Dong,^{*a*}[‡] Ying Li,^{*a*} Lizhen Meng,^{*a*} Zhiqiang Hao,^{**a*} Zhangang Han,^{*a*} Guo-Liang Lu^{*b*} and Jin Lin^{**a*} ^{*a*} Hebei Key Laboratory of Organic Functional Molecules, The College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China ^{*b*}Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand [‡] Both authors contributed equally to this work.

Correspondence to: Zhiqiang Hao and Jin Lin, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China E-mail: <u>haozhiqiang1001@163.com</u>; <u>linjin64@126.com</u>

Table of Contents

1. The screening of bases and solvents	51
2. Crystal data for 1b, 2a and 2b	52
3. NMR data of the primary amides	S4
4. NMR data of the benzonitrile derivatives	S7

1. The screening of bases and solvents

Table S1. Screening of bases and solvents for oxygenation of bezylamine to benzamide catalyzed by $1b^a$

	NH ₂ 3a	cat. 1b , base solvent, air, reflu	→ NH ₂ 4a	
Run	Solvent	Base	Conversion ^b (%)	Yield ^b (%)
1	<i>i</i> -PrOH	t-BuOK	76	60
2	CH ₃ CH ₂ OH	t-BuOK	79	18
3	CH ₃ OH	t-BuOK	72	12
4	THF	t-BuOK	42	11
5	Toluene	t-BuOK	trace	trace
6	1,4-dioxide	t-BuOK	56	32
7	t-BuOH	t-BuOK	90	77
8	t-BuOH	КОН	86	70
9	t-BuOH	NaOH	68	43
10	t-BuOH	Na ₂ CO ₃	60	22
11	t-BuOH	NaHCO ₃	48	17
12	t-BuOH	DABCO	35	trace
13	t-BuOH	Cs_2CO_3	28	trace

^{*a*}Reaction conditions: benzyl amine (1.0 mmol), Cat. **1b** (3.0 mol%), *t*-BuOK (1.0 mmol), *t*-BuOH (4.0 mL), t = 12 h. ^{*b*} determined by GC.

2. Crystal data for 1b, 2a and 2b.

Complex	1b	2a	2b
formula	$C_{32}H_{16}Br_4N_2O_{10}Ru_3$	$C_{36}H_{24}N_2O_{12}Ru_3$	$C_{34}H_{18}Br_2N_2O_{10}Ru_3$
Fw	1211.32	979.78	1077.52
<i>T</i> , K	298(2)	298(2) K	296(2) K
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Triclinic
space group	C2/c	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	11.6950(9)	11.4233(11)	9.9227(5)
<i>b</i> (Å)	16.5574(16)	12.1695(12)	12.4570(6)
<i>c</i> (Å)	19.8654(18)	15.1533(14)	16.0614(8)
a (°)	90	70.4830(10)	80.5840(10)
β (°)	103.851(3)	87.865(2)	74.3200(10)
γ (°)	90	78.5920(10)	67.5180(10)
Volume (Å ³)	3720.7(5)	1945.3(3)	1762.10(15)
Ζ	4	2	2
$D_{\text{cale}} (\text{mg/m}^3)$	2.162	1.673	2.031
μ (mm ⁻¹)	5.554	1.211	3.596
F (000)	2296	964	1036
Crystal size (mm)	0.27×0.23×0.12	0.43 x 0.32 x 0.30	0.28 x 0.26 x 0.19 mm
θ range (°)	2.47-25.02	2.28-25.02	2.281-28.315
Reflections collected	9115/3259	9720/6722	2.281 to 28.315
R (int)	0.0437	0.0414	0.0329
Completeness to θ	99.70%	97.9%	98.7 %
Max. and min. transmission	0.5554/0.3155	0.7127/0.6240	0.5636/ 0.3812
Data/restraints/ parameters	3259/0/231	6722 / 0 / 480	8654 / 0 / 461
Goodness-of-fit on F^2	1.044	1.046	1.023

 Table S2. Crystal data and structure refinements of ruthenium complexes

$R_1, wR_2 \left[I > 2\sigma(I)\right]$	0.0354, 0.0731	0.0400, 0.1000	0.0381, 0.1040
R_1 , w R_2 (all data)	0.0592, 0.0797	0.0531, 0.1100	0.0473, 0.1211
Max.peak/(e.Å-3)	0.856	0.924	2.251
Mini.peak/(e.Å-3)	-0.783	-1.033	-1.380
CCDC	1559100	1558722	1504156

3. NMR data of the primary amides

1. benzamide (4a)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 7.99 (s, 1H, N*H*₂), 7.89 (d, *J* = 7.0 Hz, 2H, Ph-*H*), 7.51 (t, *J* = 7.3 Hz, 1H, Ph-*H*), 7.45 (t, *J* = 7.3 Hz, 2H, Ph-*H*), 7.38 (s, 1H, N*H*₂) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆, 298 K): δ 167.9, 134.3, 131.2, 128.2, 127.5 ppm.

2. 4-methylbenzamide (4b)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 7.87 (s, 1H, N*H*₂), 7.77 (d, *J* = 8.1 Hz, 2H, C₆*H*₄), 7.23-7.25 (m, 3H, C₆*H*₄, N*H*₂), 2.34 (s, 3H, C*H*₃) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆, 298 K): δ 167.7, 141.1, 131.5, 128.7, 127.5, 20.9 ppm.

3. 3-methylbenzamide (4c)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 7.93 (s, 1H, N*H*₂), 7.67-7.71 (m, 2H, C₆*H*₄), 7.31-7.34 (m, 3H, C₆*H*₄, N*H*₂), 2.34 (s, 3H, C*H*₃) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz, 298 K): δ 168.1, 137.4, 134.3, 131.8, 128.1, 124.6, 20.9 ppm.

4. 2-methylbenzamide (4d)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 7.68 (s, 1H, N*H*₂), 7.28-7.36 (m, 3H, C₆*H*₄, N*H*₂), 7.18-7.23 (m, 2H, C₆*H*₄), 2.36 (s, 2H, C*H*₃) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz, 298 K): δ 171.1, 137.0, 135.2, 130.5, 129.1, 127.0, 125.3, 19.7 ppm. 5. 4-methoxybenzamide (**4e**)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 7.85 (m, 3H, C₆*H*₄, N*H*₂), 7.17 (s, 1H, N*H*₂), 6.97 (d, J = 8.9 Hz, 2H, C₆*H*₄), 3.80 (s, 3H, OC*H*₃) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz, 298 K): δ 167.4, 161.6, 129.3, 126.5, 113.4, 55.3 ppm.

6. 4-(tert-butyl)benzamide (4f)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 7.88 (s, 1H, N*H*₂), 7.80 (d, *J* = 8.5 Hz, 2H, C₆*H*₄), 7.45 (d, *J* = 8.5 Hz, 2H, C₆*H*₄), 7.25 (s, 1H, N*H*₂), 1.29 (s, 9H, C*H*₃) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz, 298 K): δ 167.8, 153.9, 131.5, 127.3, 124.9, 34.6, 30.9 ppm.

7. 4-chlorobenzamide (4g)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 8.04 (s, 1H, N*H*₂), 7.89 (d, *J* = 8.5 Hz, 1H, C₆*H*₄), 7.52 (d, *J* = 8.5 Hz, 1H, C₆*H*₄), 7.45 (s, 1H, N*H*₂) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz, 298 K): δ 166.8, 136.1, 133.0, 129.4, 128.3 ppm.

8. 4-(trifluoromethyl)benzamide (4h)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 8.19 (s, 1H, N*H*₂), 8.06 (d, *J* = 8.0 Hz, 2H, C₆*H*₄), 7.84 (d, *J* = 8.2 Hz, 2H, C₆*H*₄), 7.61 (s, 1H, N*H*₂) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz, 298 K): δ 166.7, 138.1, 131.3 (q, *J*_{C-F} = 31.7 Hz), 128.3, 125.3. (q, *J*_{C-F} = 5.1 Hz), 122.6 (q, *J*_{C-F} = 270.7 Hz) ppm.

9. 4-fluorobenzamide (4i)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 7.99 (s, 1H, N*H*₂), 7.92-7.96 (m, 2H, C₆*H*₄), 7.39 (s, 1H, N*H*₂), 7.24-7.29 (m, 2H, C₆*H*₄) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz, 298 K): δ 166.8, 165.2, 130.8, 130.1, 115.2 ppm. 10. 3-fluorobenzamide (**4j**)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 8.05 (s, 1H, N*H*₂), 7.72 (d, *J* = 7.7 Hz, 1H, C₆*H*₄), 7.67 (d, *J* = 9.2 Hz, 1H, C₆*H*₄), 7.48-7.53 (m, 2H, C₆*H*₄, N*H*₂), 7.37 (t, *J* = 8.3 Hz, 1H, C₆*H*₄) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz, 298 K): δ 166.5, 163.2, 136.8, 130.3, 123.6, 118.0, 114.1 ppm.

11. 2-fluorobenzamide (4k)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 7.61-7.69 (m, 3H, C₆*H*₄, N*H*₂), 7.49-7.55 (m, 1H, C₆*H*₄), 7.24-7.29 (m, 2H, C₆*H*₄) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz, 298 K): δ 165.2, 160.5, 132.4, 130.2, 124.4, 123.8, 116.2 ppm.

12. furan-2-carboxamide (4I)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 7.79 (s, 1H, furan-*CH*), 7.74 (s, 1H, N*H*₂), 7.35 (s, 1H, N*H*₂), 7.08 (d, *J* = 3.4 Hz, 1H, furan-*CH*), 6.59 (d, *J* = 3.3 Hz, 1H, furan-*CH*) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz, 298 K): δ 159.4, 147.9, 145.0, 113.6, 111.8 ppm.

13. pyridin-2-ylmethanamine (4m)

¹H NMR (DMSO-*d*₆, 400 MHz, 298 K): δ 8.62 (d, *J* = 4.3 Hz, 1H, Py-*H*), 8.14 (s, 1H, N*H*₂), 8.02 (d, *J* = 8.9 Hz, 1H, Py-*H*), 7.98 (t, *J* = 7.7, 1H, Py-*H*), 7.65 (s, 1H, N*H*₂), 7.58 (t, *J* = 7.4 Hz, 1H, Py-*H*) ppm. ¹³C NMR (DMSO-*d*₆, 100 MHz, 298 K): δ 165.7, 150.0, 148.2, 137.4, 126.2, 121.6 ppm.

4. NMR data of the benzonitrile derivatives

1. benzonitrile (5a)

¹H NMR (400 MHz, CDCl₃, 298 K): δ 7.59-7.70 (m, 3H), 7.52-7.46 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 132.4, 131.6, 129.1, 118.8, 112.3 ppm. 2. 4-Methylbenzonitrile (**5b**)

¹H NMR (400 MHz, CDCl₃, 298 K): δ 7.81 (d, *J* = 7.0 Hz, 2H), 7.49 (d, *J* = 7.6 Hz, 2H), 2.05 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 143.7, 132.0, 129.8, 119.2, 109.2, 21.8 ppm.

3. 4-Methoxybenzonitrile (5d)

¹H NMR (400 MHz, CDCl₃, 298 K): δ 7.59 (d, *J* = 8.6 Hz, 2H), 6.95 (d, *J* = 8.6 Hz, 2H), 3.86 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 163.0, 134.1, 119.3, 114.8, 104.0, 55.6 ppm.

4. 4-*tert*-Butylbenzonitrile (5e)

¹H NMR (400 MHz, CDCl₃, 298 K): δ 7.59 (d, *J* = 7.0 Hz, 2H), 7.48 (d, *J* = 7.1 Hz, 2H), 1.33 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 156.8, 131.9, 126.1, 119.1, 109.1, 35.2, 30.9 ppm.

5. 4-Chlorobenzonitrile (5f)

¹H NMR (400 MHz, CDCl₃, 298 K): δ 7.61 (d, *J* = 8.6 Hz, 2H), 7.49 (d, *J* = 2.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 144.4, 131.0, 129.0, 115.7, 109.2 ppm.

6. 4-Fluorobenzonitrile (5g)

¹H NMR (400 MHz, CDCl₃, 298 K): δ 7.74-7.68 (m, 2H), 7.55-7.51 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 166.4, 132.3, 118.9, 116.4, 108.2 ppm. 7. 2-Furonitrile (**5**i)

: N

¹H NMR (400 MHz, CDCl₃, 298 K): δ 7.57 (s, 1H), 6.80 (s, 1H), 6.55 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 149.5,143.4, 137.1,112.2, 110.2 ppm. 8. 2-Pyridinecarbonitrile (**5j**)

<u>_N</u> - N

¹H NMR (400 MHz, CDCl₃, 298 K): δ 8.65 (s, 1H), 7.81 (s, 1H), 7.71 (s, 1H), 7.54 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 151.1, 137.1, 134.0,128.6, 127.0, 117.2 ppm.