Supplementary Information

Highly efficient catalytic transfer hydrogenation of furfural over defect-rich amphoteric ZrO₂ with abundant surface acid-base sites

Zekun Zhu⁺, Lingling Yang⁺, Changxuan Ke, Guoli Fan^{*}, Lan Yang, and Feng Li^{*}

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China

* To whom all correspondence should be addressed

Tel.: 8610-64451226; Fax: 8610-64425385.

E-mail: fangl@mail.buct.edu.cn (G. Fan); Lifeng@mail.buct.edu.cn (F. Li)

[+] These authors contribute equally to this work.

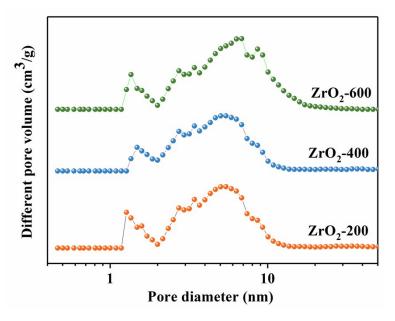


Fig. S1 Pore size distribution of ZrO_2 calcinated at different temperature.

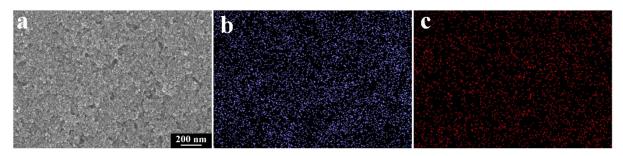


Fig. S2 SEM image (a) of as-prepared ZrO₂, and corresponding elemental mapping of Zr (b) and O (c).

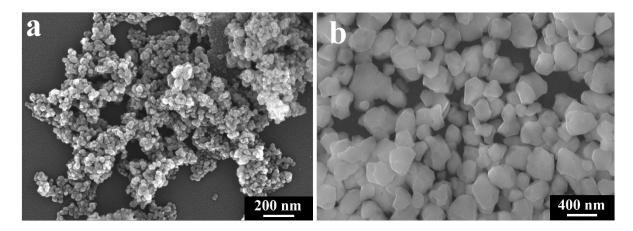
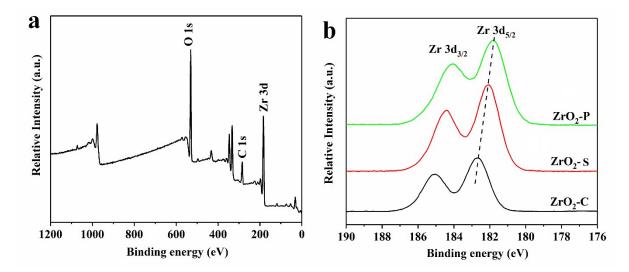



Fig. S3 SEM images of ZrO₂ samples: ZrO₂-S (a) and ZrO₂-C (b).

Fig. S4 XPS survey of as-prepared ZrO₂ sample (a) Zr 3d of ZrO₂-P, ZrO₂-S, and ZrO₂-C samples (b).

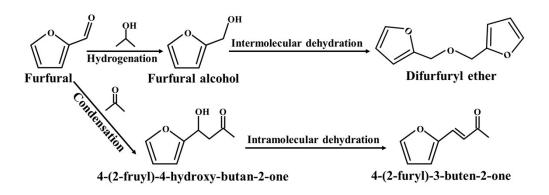


Fig. S5 Possible reactions in the catalytic transfer hydrogenation of furfural over as-prepared defect-rich amphoteric ZrO₂.