ESI for

Thioether complexes of WSCl₄, WOCl₄ and WSCl₃ and evaluation of

thiochloride complexes as CVD precursors for WS₂ thin films

Danielle E. Smith^a, Victoria K. Greenacre^a, Andrew L. Hector^a, Ruomeng Huang^b, William Levason^a,

Gillian Reida*, Fred Robinsona and Shibin Thomasa

^a School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; email:

G.Reid@soton.ac.uk

^b School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK

Contents

Data for $[(WSCl_4)_2 \{MeS(CH_2)_2SMe\}]$.	2
Data for [(WSCl ₄) ₂ (MeS(CH ₂) ₃ SMe)]	3
Data for $[(WSCl_4)_2 \{^i PrS(CH_2)_2 S^i Pr \}]$	5
Data for $[(WSCl_4)_2 \{PhS(CH_2)_2SPh\}]$	6
Data for [WSCl ₄ (SMe ₂)]	7
Data for [WSCl ₄ (SeMe ₂)]	8
Data for $[WSCl_3{MeS(CH_2)_2SMe}]$	9
Data for $[WSCl_3{iPrS(CH_2)_2S^iPr}]$	0
Data for $[(WOCl_4)_2 \{^i PrS(CH_2)_2 S^i Pr \}]$	0
Data for $[(WOCl_4)_2 \{PhS(CH_2)_2SPh\}]$ 1	1
Data for [WOCl ₄ (SMe ₂)]1	2
Crystallographic parameters1	3

Data for [(WSCl₄)₂{MeS(CH₂)₂SMe}]

Figure 2: ¹H NMR spectrum of [(WSCl₄)₂{MeS(CH₂)₂SMe}] in CD₂Cl₂.

Figure 3: UV/Vis spectrum (diffuse reflectance) for [(WSCl₄)₂{MeS(CH₂)₂SMe}].

Data for [(WSCl₄)₂(MeS(CH₂)₃SMe)] N 600 Wavenumber (cm-1)

Figure 4: IR spectrum of [(WSCl₄)₂{MeS(CH₂)₃SMe}] (Nujol).

Figure 5: ¹H NMR spectrum of [($WSCl_4$)₂{ $MeS(CH_2)_3SMe$ }] in CD_2Cl_2

44000 42000 40000 38000 36000 34000 32000 30000 28000 26000 24000 22000 20000 Wavenumber (cm-1)

Figure 6: UV/Vis spectrum (diffuse reflectance) for [(WSCl₄)₂{MeS(CH₂)₃SMe}].

Data for [(WSCl₄)₂{ⁱPrS(CH₂)₂SⁱPr}]

Figure 8: ¹H NMR spectrum of $[(WSCl_4)_2(PrS(CH_2)_2SPr_3)]$ in CD_2Cl_2

Figure 9: UV/Vis spectrum (diffuse reflectance) for [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr}]].

3200 3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 Wavenumber (cm-1) Figure 10: IR spectrum of [(WSCl₄)₂{PhS(CH₂)₂SPh}] (Nujol).

Figure 11: ¹H NMR spectrum of [(WSCl₄)₂{PhS(CH₂)₃SPh}] in CD₂Cl₂

3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 Wavenumber (cm-1)

Figure 12: IR spectrum of [WSCl₄(SMe₂)] (Nujol).

Data for [WSCl₄(SeMe₂)]

Figure 14: IR spectrum of [WSCl₄(SeMe₂)] (Nujol).

Figure 15: ¹H NMR spectrum of [WSCl₄(SeMe₂)] in CD₂Cl₂ (left) and ⁷⁷Se^{{1}H} NMR spectrum of [WSCl₄(SeMe₂)] in CD₂Cl₂ at -90°C (right).

Figure 16: IR spectrum of [WSCl₃{MeS(CH₂)₂SMe}] (Nujol).

Data for [WSCl₃{ⁱPrS(CH₂)₂SⁱPr}]

600 Wavenumber (cm-1 Figure 17: IR spectrum of [WSCl₃{ⁱPrS(CH₂)₂SⁱPr}] (Nujol).

Figure 18: IR spectrum of $[(WOCl_4)_2\{^iPrS(CH_2)_2S^iPr\}]$ (Nujol).

Figure 19: ¹H NMR spectrum of $[(WOCl_4)_2!^{i}PrS(CH_2)_2S^iPr]$ in CD_2Cl_2

Data for [(WOCl₄)₂{PhS(CH₂)₂SPh}]

Figure 20: IR spectrum of [(WOCl₄)₂{PhS(CH₂)₂SPh}] (Nujol).

Figure 21: ¹*H NMR spectrum of* [(WOCl₄)₂{*PhS*(*CH*₂)₂*SPh*}] *in CD*₂*Cl*₂

Data for [WOCl₄(SMe₂)]

Figure 22: IR spectrum of [WOCl₄(SMe₂)] (Nujol).

Figure 23: ¹H NMR spectrum of [WOCl₄(SMe₂)] in CD₂Cl₂.

Crystallographic parameters

Table 1: X-ray crystallographic data

Compound	[(WSCl ₄) ₂ {PhS(CH ₂) ₂ SPh}]	[(WSCl ₄) ₂ {MeS(CH ₂) ₂ SMe}]	$[(WSCl_4)_2\{^iPrS(CH_2)_2S^iPr\}]$	
Formula	$C_{14}H_{14}Cl_8S_2W_2$	$C_4H_{10}Cl_8S_4W_2$	$C_8H_{18}Cl_8S_2W_2$	
М	961.79	837.66	893.76	
Crystal system	monoclinic	monoclinic	monoclinic	
Space group (no)	P2 ₁ /n (14)	$P2_{1}/c$ (14)	$P2_{1}/c$ (14)	
a/Å	10.5790(2)	7.6849(2)	10.7903(2)	
b/Å	13.9272(3)	10.5079(3)	8.89710(10)	
c/Å	17.2182(4)	11.8240(4)	12.1898(2)	
α/°	90	90	90	
β/°	96.368(2)	91.882(3)	106.732(2)	
γ/°	90	90	90	
U/Å ³	2521.21(9)	954.30(5)	1120.70(3)	
Z	4	2	2	
μ (Mo-K α)/mm ⁻¹	10.300	13.581	11.574	
F(000)	1784	764	828	
Total Reflns.	17788	13938	18750	
R _{int}	0.070	0.141	0.061	
Unique Reflns.	6811	1864	2199	
Parameters/restraints	253, 0	83, 0	102, 0	
GOF	0.968	1.113	1.180	
$R_1, wR_2(I>2\sigma I)$	0.042, 0.071	0.057, 0.148	0.039, 0.087	
R1, wR2(all data)	0.063, 0.082	0.060, 0.152	0.041, 0.088	

^a common data: wavelength (Mo-K_a) = 0.71073 Å; $\theta(\max) = 27.5^{\circ}$; ^b R₁ = $\Sigma ||Fo|-|Fc||/\Sigma|Fo|$; wR₂=[$\Sigma w(Fo^2-Fc^2)^2/\Sigma wFo^4$]^{1/2}

Compound	[(WSCl ₄) ₂ {MeS(CH ₂) ₃ SMe}]	[WOCl ₃ {MeS(CH ₂) ₂ SMe}]	[WOCl ₃ {MeS(CH ₂) ₃ SMe}]	[WSCl ₃ {MeS(CH ₂) ₂ SMe}]
Formula	$C_5H_{12}Cl_8S_2W_2$	C ₄ H ₁₀ Cl ₃ OS ₂ W	C ₅ H ₁₂ Cl ₃ OS ₂ W	$C_4H_{10}Cl_3S_3W$
М	851.69	428.44	442.47	444.50
Crystal system	triclinic	triclinic	triclinic	monoclinic
Space group (no)	P-1 (2)	P1 (1)	P-1 (2)	P2 ₁ /n (14)
a/Å	6.6665(2)	6.7317(3)	6.7576(4)	6.8758(1)
b/Å	11.1479(2)	6.9581(3)	7.3941(4)	13.2588(2)
c/Å	13.8916(3)	7.1904(3)	12.4200(5)	12.5782(2)
α/°	101.979(2	108.981(4)	78.514(4)	90
β/°	100.011(2)	98.845(4)	81.724(4)	94.541(2)
γ/°	95.717(2)	114.330(4)	72.508(5)	90
U/Å ³	984.61(4)	273.54(2)	577.68(5)	1143.09(3)
Z	2	1	2	4
μ (Mo-K α)/mm ⁻¹	13.166	11.619	11.008	11.296
F(000)	780	199	414	828
Total Reflns.	15275	5239	15495	30189
R _{int}	0.039	0.056	0.069	0.026
Unique Reflns.	5051	2880	3459	3609
Parameters/restraints	174, 0	102, 3	111, 0	111,0
GOF	1.177	1.041	1.097	1.085
$R_1, wR_2(I > 2\sigma I)$	0.050, 0.118	0.045, 0.104	0.050, 0.117	0.039, 0.075
R1, wR2(all data)	0.058, 0.128	0.046, 0.105	0.059, 0.121	0.043, 0.176

Figure S1 The structure of $[(WSCl_4)_2 \{MeS(CH_2)_2SMe\}]$ showing the atom numbering scheme. H atoms are omitted for clarity. Selected bond lengths (Å) and angles (°) are: W1–Cl2 = 2.301(3), W1–Cl1 2.307(2), W1–Cl4 = 2.311(3), W1–Cl3 = 2.295(3)), W1–S1 = 2.095(2), W1–S2 = 2.835(2), S1–W1–Cl(1-4) = 97.84(10) – 101.05(10), S2–W1–Cl(1-4) = 75.01(9) – 86.05(9).

The structure here reported in $P2_1/c$ is very similar to the literature report¹⁶ (in $P2_1/n$), but is of higher precision.