Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

S1. NMR and Mass spectra

Fig. S1. NMR spectrum of dpq ligand.

Fig. S2. ESI-Mass spectrum of Tb(acac)₃dpq.

Fig. S3. ESI-Mass spectrum of Tb(tmh)₃dpq.

Fig. S4. ESI-Mass spectrum of Gd(acac)₃dpq.

Fig. S5. ESI-Mass spectrum of Gd(tmh)₃dpq.

S2. TD-DFT calculations of Tb(III) complexes in isolated states

To clarify the electronic structure of the Tb(III) complexes, we calculated the optimized structure of Tb(acac)₃dpq (PM3) in the isolated state (vacuum condition). The calculations were performed on a simplified model of the Tb(III) unit using a ligand bonded to an Al(III) ion. TD-DFT calculations (CAM-B3LYP/6-31G(d), IPCM-CH₂Cl₂) were then performed for the optimized structure. The calculated T_1 states are mainly composed of LLCT transitions from delocalized orbitals (acac and dpq ligand).

Fig. S6 Minor T₁ state configurations (5 %-10%) (HOMO-5→LUMO+1: 8 %, HOMO-

6→LUMO+2: 6 %, HOMO-11→LUMO+2: 7 %).

S3. Coordination geometry of Tb(III) complexes in crystalline phase

Based on X-ray crystal analysis, the coordination sites of Tb(acac)₃dpq and Tb(tmh)₃dpq comprise three β -diketonate ligands and one dpq ligand with a hetero- π -conjugated system (Fig. S7). To determine the coordination geometry around the Tb(III) ion, we performed continuous shape measure calculations (Table S1).¹⁴

Fig. S7 Monomer unit in X-ray crystal structures of Tb(acac)₃dpq and Tb(tmh)₃dpq

		$SAP(D_{4d})$	$\text{TDH}(D_{2d})$	$BTP(C_{2v})$
Tb(acac)3dpq	Solid	0.581	2.143	2.261
Tb(acac) ₃ dpq	Isolated	4.738	4.569	4.910
Tb(tmh)3dpq	Solid	0.656	2.073	2.481

Table S1 S-factors of the Tb(III) complexes

Unlike the similar steric unit structures between Tb(acac)₃dpq and Tb(tmh)₃dpq in a solid state, their aggregation forms are quite different. Two patterns of intermolecular dipole-dipole interactions (Fig. S8a, 1.0 nm (A-B) and 1.2 nm (A-C)) were observed for the Tb(acac)₃dpq crystal structure, which corresponds to a slipped-cofacially stacked configuration, i.e., J-aggregation. In contrast, strong intermolecular π - π (Fig. S8b, 0.3 nm (A-B)) and weak dipole-dipole interactions (1.6 nm (B-C)) between the dpq ligands were observed for Tb(tmh)₃dpq, which corresponds to a face-to-face cofacial configuration, i.e., H-aggregation. Formation of this Tb-based H-aggregate is considered to arise from the large steric hindrance of the tmh ligands.

Fig. S8 ORTEP drawings (ellipsoids set at 50% probability) of Tb(acac)₃dpq (a) and Tb(tmh)₃dpq (b)

S4. TG-DTA of Tb(III) complexes in crystalline phase

The TGA profiles of Tb(acac)₃dpq and Tb(tmh)₃dpq are shown in Fig. S9. The thermostability of the J-aggregate is slightly higher than that of the H-aggregate, although the weight of the molecular units in the J-aggregate is less than that in the H-aggregate. The results indicate that J-aggregation forms a rigid structure, which enhances the thermostability.

Fig. S9 TG-DTA of Tb(acac)₃dpq (red line) and Tb(tmh)₃dpq (blue line).

S5. Electronic absorption of Tb(III) complexes in solution and solid states

The electronic absorption spectra of dpq, Gd(acac)₃dpq and Gd(tmh)₃dpq in CHCl₃ are shown in Fig. S10. By the complexation, the electronic absorption bands were shifted from that of the free dpq ligand.

Fig. S10 Electronic absorption spectra of dpq in CHCl₃ (a, broken line, 2.0×10^{-5} M), Tb(acac)₃dpq in CHCl₃ (a, red line, 1.1×10^{-5} M), in solid state (b, red line), and Tb(tmh)₃dpq in CHCl₃ (b, blue line, 1.0×10^{-5} M), in solid state (b, blue line).

S6. DFT calculation of Tb(III) unit in solid states

To clarify the electronic structure of the ligand moieties in the Tb(III) complex unit in solid states, DFT calculations were performed on a simplified model of the Tb(III) unit using a ligand bonded to an Al(III) ion based on the single X-ray crystal structure (dpq: B3LYP/6-31+G(d, p), Al(acac)₃dpq: CAM-B3LYP/6-31G(d)). From the calculation results, the $S_0 \rightarrow S_1$ transition band can be ascribed to characteristic ligand-to-ligand charge transfer bands from β -diketonate to dpq ligands (Fig. S11). The energy donating states (T₁ state) of the dpq ligand and Tb(III) complexes were also calculated by TD-DFT (CAM-B3LYP/6-31G(d)). The T₁ state of the dpq ligand was estimated as 22700 cm⁻¹, which is similar to previous experimental values (23500 cm⁻¹)^{11a}. The formation of the Tb(III) complex caused almost no change in the T₁ energy (22900 cm⁻¹). The complex state is mainly composed of dpq localized excited states (Fig. S12).

Fig. S11 Main S₁ state configurations (HOMO-1→LUMO+1: 45 %, HOMO-1→LUMO:

22 %, HOMO→LUMO+1: 12 %).

Fig. S12 Main T₁ state configurations (HOMO-6 \rightarrow LUMO+2: 26 %, HOMO-7 \rightarrow LUMO:

20 %).

S7. Crystal data and phosphorescence spectra of Gd(tmh)3dpq and Gd(acac)3dpq

A single crystal of $Gd(tmh)_3dpq$ and $Gd(acac)_3dpq$ was obtained by recrystallization from CH_2Cl_2 /hexane solution. Although the structure of $Gd(tmh)_3dpq$ is similar with that of $Tb(tmh)_3dpq$, the $Gd(acac)_3dpq$ is different from that of $Tb(tmh)_3dpq$.

Fig. S13 Crystal structure of Gd(tmh)₃dpq.

Fig. S14 Crystal structure of Gd(acac)₃dpq.

	Gd(tmh)3dpq	Gd(acac)3dpq	
chemical formula	C47H65GdN4O6	C29H29GdN4O6	
formula weight	939.28	686.81	
crystal system	monoclinic	monoclinic	
space group	$P 2_1/c$	I 2/a	
a/Å	13.4029(2)	14.962(2)	
b/ Å	15.2786(2)	17.893(4)	
c / Å	26.4644(4)	23.016(5)	
α / deg	90	90	
β / deg	91.6930(10)	95.812(15)	
γ / deg	90	90	
volume /Å	5416.95(14)	6130(2)	
Ζ	4	8	
density / g cm^{-3}	1.152	1.488	
Temperature / °C	20	20	
R	0.0337	0.0780	
wR_2	0.1236	0.1576	

Table S2 Crystal data of Gd(tmh)₃dpq and Gd(acac)₃dpq

S7. Emission and excitation spectra of CH-Tb(III)

Fig. S15 Emission (solid line, $\lambda_{ex} = 350$ nm) and excitation (broken line, $\lambda_{em} = 554$ nm) of Tb(tmh)₃dpq in solid state.

S8. Photophysical properties of Tb(acac)₃dpq in solution and solid states.

We measured the emission spectra and time-resolved emission intensity of Tb(acac)₃dpq $(1.0 \times 10^{-2} \text{ M})$ in non-degassed CH₂Cl₂ and degassed CH₂Cl₂ (Fig. S16), excited mainly by LLCT bands (Fig. S10-S11). The emission spectrum of Tb(acac)₃dpq in non-degassed CH₂Cl₂ is almost the same as that in degassed CH₂Cl₂. The detected values for short emission lifetimes were also almost same (Fig. S17, $\tau_{\text{non-degassed}} = 4.3 \,\mu\text{s}$, $\tau_{\text{degassed}} = 5.1 \,\mu\text{s}$).

The emission spectrum in the solution state is relatively similar to that of CJ-Tb(III). This indicated that the radiative rate constants of Tb(acac)₃dpq in solution are similar to those of CJ-Tb(III). Also, k_r and Φ_{ff} of Tb(III) complexes were calculated under the assumption that the emission lifetimes at 100 K (Fig. 8) are the radiative emission lifetimes (τ_{rad}).^{S2-S3} CJ-Tb(III) also exhibited a relatively high Φ_{ff} of 62%, a high k_r (1.4×10³ s⁻¹), and a relatively small k_{nr} (8.6×10² s⁻¹). On the other hand, Tb(acac)₃dpq in solution exhibited a low Φ_{ff} of 0.6% and a high k_{nr} (2.3×10⁵ s⁻¹), under the assumption that the radiative rate constants of Tb(acac)₃dpq in solution are the same as those of CJ-Tb(III). The calculation assumes that solidification strongly suppresses the non-radiative process of Tb(acac)₃dpq.

Fig. S16 Emission spectra of Tb(acac)₃dpq in non-degassed CH₂Cl₂ (1.0×10^{-2} M, black line) and degassed CH₂Cl₂ (1.0×10^{-2} M, red line).

Fig. S17 Emission decay curves of Tb(acac)₃dpq in non-degassed CH₂Cl₂ (1.0×10^{-2} M, black line) and degassed CH₂Cl₂ (1.0×10^{-2} M, red line).^{S4}

S9. AIE property using other solvents

We investigated the AIE behavior of CJ-Tb(III) using CHCl₃ and C₂H₄Cl₂ (1,2dichloroethane) as solvents (1.0×10⁻³ M). In CHCl₃ and C₂H₄Cl₂ solutions, Tb(acac)₃dpq showed emission bands originating from the Tb(III) ion (Fig. S18). After solidification by a casting solution, we observed bright emissions (Fig. S19) for solid Tb(III) complexes, although Tb(acac)₃dpq in the solutions showed very weak emissions. Their emission lifetimes in the solid states were different (τ_{ave} (cast-CHCl₃) = 0.39 ms, τ_{ave} (cast-C₂H₄Cl₂) = 0.43 ms, Fig. S20). Therefore, these results indicate that the AIE property is solventdependent.

Fig. S18 Emission spectra of Tb(acac)₃dpq in CHCl₃ (1.0×10^{-3} M, black line), C₂H₄Cl₂ solution (1.0×10^{-3} M, red line).

Fig. S19 Photograph of solid $Tb(acac)_3dpq$ obtained by casting solution (CHCl₃ and C₂H₄Cl₂).

Fig. S20 Emission decay curves of Tb(acac)₃dpq in solid state prepared by casting solution (CHCl₃: black line, C₂H₄Cl₂: red line).

S10. Emission decays of CJ-Tb(III) excited by Tb(III) ion

The emission lifetime of CJ-Tb(III) excited by ligands (0.47 ms) was same with that of excited by Tb(III) ion (0.47 ms), indicating the energy transfer rate is higher than the deactivation rate from Tb(III) emitting level.

Fig. S21. Emission decays of CJ-Tb(III) excited by ligands (356 nm).

Fig. S22 Emission decays of CJ-Tb(III) excited by Tb(III) ion (495 nm) (black solid line:

Tb(III) emission, black broken line: prompt).

S11. TEM measurement of Tb(acac)₃(dpq)-SDS

Fig. S23 TEM images of Tb(acac)₃(dpq)-SDS (JEM-2010, 200 kV).

References and Notes

S1. S. Quici, M. Cavazzini, G. Marzanni, G. Accorsi, N. Armaroli, B. Ventura and F. Barigelletti, *Inorg. Chem.* 2005, 44, 529.

S2. R. Pavithran, N. S. S. Kumar, S. Biju, M. L. P. Reddy, S. A. Junior, R. O. Freire, *Inorg. Chem.* 2006, **45**, 2184.

S3. K. Yanagisawa, T. Nakanishi, Y. Kitagawa, T. Seki, T. Akama, M. Kobayashi, T.Taketsugu, H. Ito, K. Fushimi and Y. Hasegawa, *Eur. J. Inorg. Chem.* 2015, 28, 4769.

S4. We can also detect the weak, longer lifetime components; however, we cannot determine the origin of these components at present although they might originate from the AIE component in solution or a part of the dissociation complex.