Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Dalton Transactions

Supporting Information

A novel Mn⁴⁺ doped red phosphor composed of MgAl₂O₄ and CaAl₁₂O₁₉ phases for Light-Emitting Diodes

Yibing Wu^{a,b}, Yixi Zhuang^{c,*}, Rong-Jun Xie^c, Kaibin Ruan^b, Xinhua Ouyang^{a,*}

a College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China.

b College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China.

c College of Materials, Xiamen University, Simingnan-Road 422, Xiamen 361005, P. R. China.

*Email: zhuangyixi@xmu.edu.cn;

ouyangxh@fafu.edu.cn

Element	Theoretical(atom%)	Experimental(atom%)
Са	2.17	1.39
Mg	4.35	2.35
Al	34.78	24.92
0	58.70	71.27

Table S1 Results of EDX measurements (in atom%) for CMA:Mn⁴⁺

Fig. S1. Exemplary EDX-Spectra of CMA:Mn4+

Fig. S2 The diffuse reflectance spectra of CMA:Mn⁴⁺ at room temperature.

Fig. S3 The excitation spectra of CA:Mn⁴⁺ and CMA:Mn⁴⁺ monitored at 658 nm, respectively.

Fig. S4 Schematic illustration of Mn^{4+} - Mn^{4+} pairs in connection with interstitial O²⁻ transformed into isolated Mn^{4+} ions with Mg^{2+} ions.

Fig. S5 Configurational coordinate diagram for Mn⁴⁺ ions.