Electronic Supplementary Information:

Large Optical Polarizability Causing Positive Effects on Birefringence of Planar-Triangular BO₃ Groups in Ternary

Borates

Xinyuan Zhou,^{#a} Junben Huang,^{#b} Gemei Cai,^{*b} Hengwei Zhou,^a Yineng Huang^{*a} and Xin Su^{*a}

^a Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College

of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China.

^b School of Materials Science and Engineering, Education Ministry Key Laboratory of Non-ferrous

Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China.

*Corresponding author E-mail: caigemei@csu.edu.cn.

*Corresponding author E-mail: ynhuang@nju.edu.cn.

*Corresponding author E-mail: suxin_phy@sina.com.

[#] These authors contributed equally.

Contents

Table S1 Summary of crystallographic data of 14 ternary borates containing d^{10} configuration cations.

Table S2 Space groups, calculated band gaps and birefringence values Δn of ternary borates α -/ β -TM₃(BO₃)₂ (TM = Zn, Cd), Hg₃(BO₃)₂, α -/ β -TMB₄O₇ (TM = Zn, Hg), CdB₄O₇, Cd₂B₂O₅, and M₃(BO₃)₂ (M = Mg, Ca, Sr).

Table S3 Mulliken charge population of different atoms in ternary borates α -/ β -TM₃(BO₃)₂ (TM = Zn, Cd), Hg₃(BO₃)₂, α -/ β -TMB₄O₇ (TM = Zn, Hg), CdB₄O₇, Cd₂B₂O₅, and M₃(BO₃)₂ (M = Mg, Ca, Sr).

Table S4 Calculated dipole moment (P), anisotropy polarizability ($\Delta \alpha$), largest hyperpolarizability tensor

 $(|\beta_{max}|)$ and HOMO-LUMO gap of B-O groups BO₃, BO₄, and B₂O₅.

Table S5 Calculated Born effective charges of ternary borates α -/ β -TM₃(BO₃)₂ (TM = Zn, Cd), Cd₂B₂O₅, and M₃(BO₃)₂ (M = Hg, Mg, Ca, Sr).

Table S6 Calculated optical permittivity and polarisabilities (*f*=>infinity) of ternary borates α -/ β -TM₃(BO₃)₂ (TM = Zn, Cd), Cd₂B₂O₅, and M₃(BO₃)₂ (M = Hg, Mg, Ca, Sr).

Table S7 The BO₃ groups density (N/V) of ternary borates α -/ β -TM₃(BO₃)₂ (TM = Zn, Cd), Cd₂B₂O₅, and M₃(BO₃)₂ (M = Hg, Mg, Ca, Sr).

Figure S1 Crystal structures of ternary borates α-Zn₃(BO₃)₂ (a), β-Zn₃(BO₃)₂ (b), α-ZnB₄O₇ (c), β-ZnB₄O₇ (d), α-Cd₃(BO₃)₂ (e), β-Cd₃(BO₃)₂ (f), Cd₂B₂O₅ (g), CdB₄O₇ (h), Hg₃(BO₃)₂ (i), α-HgB₄O₇ (j), β-HgB₄O₇ (k), and M₃(BO₃)₂ (M = Mg, Ca, Sr) (l-n).

Figure S2 Calculated band structures for ternary borates α -Zn₃(BO₃)₂ (a), β -Zn₃(BO₃)₂ (b), α -ZnB₄O₇ (c), β -ZnB₄O₇ (d), α -Cd₃(BO₃)₂ (e), β -Cd₃(BO₃)₂ (f), Cd₂B₂O₅ (g), CdB₄O₇ (h), Hg₃(BO₃)₂ (i), α -HgB₄O₇ (j), β -HgB₄O₇ (k), and M₃(BO₃)₂ (M = Mg, Ca, Sr) (l-n) by GGA functional, all of borates calculated band gaps by the GGA and HSE06 functional (o).

Figure S3 Density/partial density of states of ternary borates α-Zn₃(BO₃)₂ (a), β-Zn₃(BO₃)₂ (b), α-ZnB₄O₇ (c), β-ZnB₄O₇ (d), α-Cd₃(BO₃)₂ (e), β-Cd₃(BO₃)₂ (f), Cd₂B₂O₅ (g), CdB₄O₇ (h), Hg₃(BO₃)₂ (i), α-HgB₄O₇ (j), β-HgB₄O₇ (k), and M₃(BO₃)₂ (M = Mg, Ca, Sr) (l-n).

Figure S4 Ternary borates α -/ β -TM₃(BO₃)₂ (TM = Zn, Cd), Cd₂B₂O₅, and M₃(BO₃)₂ (M = Hg, Mg, Ca, Sr): compared with the HSE06 band gaps (a) and O (2*p*) bandwidth (b).

Figure S5 Calculated birefringence Δn of ternary borates α -Zn₃(BO₃)₂ (a), β -Zn₃(BO₃)₂ (b), α -ZnB₄O₇ (c), β -ZnB₄O₇ (d), α -Cd₃(BO₃)₂ (e), β -Cd₃(BO₃)₂ (f), Cd₂B₂O₅ (g), CdB₄O₇ (h), Hg₃(BO₃)₂ (i), α -HgB₄O₇

(j), β -HgB₄O₇ (k), and M₃(BO₃)₂ (M = Mg, Ca, Sr) (l-n).

Figure S6 Borates α -Cd₃(BO₃)₂ and Cd₂B₂O₅: IR spectra and thermal analysis. (a) and (b) are IR and thermal of α -Cd₃(BO₃)₂, (c) and (d) are those of Cd₂B₂O₅.

Figure S7 Calculated IR spectra of α -Cd₃(BO₃)₂ (a) and Cd₂B₂O₅ (b).

Compounds	Space	Crystallogr	aphic data	ICSD	
Compounds	group	a, b, c (Å)	α, β, γ (°)	number	
$Cd_2B_2O_5^{[1]}$	<i>P</i> -1	a = 3.4414(3), b = 6.3570(6), c = 9.9389(9)	$\alpha = 105.474(6), \beta =$ 90.842(6), $\gamma = 91.969(6)$	238992- ICSD	
α- Zn ₄ O(BO ₃) ₂ ^[2]	I-43m	a = b = c = 7.480(3)	$\alpha=\beta=\gamma=90$	261810- ICSD	
β- Zn ₄ O(BO ₃) ₂ ^[3]	<i>R</i> -3 <i>c</i>	a = b = c = 9.9115(4)	$\alpha = \beta = \gamma = 48.602(1)$	72943-ICSD	
α -ZnB ₄ O ₇ ^[4]	Pbca	a = 8.1093(2), b = 8.6340(2), c = 13.7200(3)	$\alpha = \beta = \gamma = 90$	424545- ICSD	
β-ZnB4O 7 ^[5]	Cmcm	<i>a</i> = 10.850(1), <i>b</i> = 6.489(1), <i>c</i> = 5.173(1)	$\alpha = \beta = \gamma = 90$	412688- ICSD	
α-Zn ₃ (BO ₃) ₂ ^[6]	<i>P</i> -1	a = 6.302(2), b = 8.248(1), c = 10.020(1)	$\alpha = 89.85(1), \beta = 89.79(1),$ $\gamma = 73.25(1)$	155112- ICSD	
β-Zn ₃ (BO ₃) ₂ ^[7]	C2/c	<i>a</i> = 23.83041(8), <i>b</i> = 5.04360(3), <i>c</i> = 8.38073(5)	$\alpha = \gamma = 90, \beta = 102.95$	193238- ICSD	
$CdB_2O_4^{[8]}$	P63	<i>a</i> = <i>b</i> = 8.8521(16), <i>c</i> = 7.1672(8)	$\alpha = \beta = 90, \gamma = 120$	419180- ICSD	
CdB ₄ O ₇ ^[9]	Pbca	<i>a</i> = 8.21(1), <i>b</i> = 8.70(1), <i>c</i> = 14.18(2)	$\alpha = \beta = \gamma = 90$	14361-ICSD	
α- Cd ₃ (BO ₃) ₂ ^[10]	Pnnm	<i>a</i> = 5.9680(10), <i>b</i> = 4.7860(10), <i>c</i> = 9.012(2)	$\alpha=\beta=\gamma=90$	240724- ICSD	
β- Cd ₃ (BO ₃) ₂ ^[11]	<i>P</i> -1	a = 6.1114(5), b = 6.1463(5), c = 7.4232(6)	$\alpha = 76.521(3), \beta =$ 80.730(3), $\gamma = 82.461(3)$	427222- ICSD	
Hg ₃ (BO ₃) ₂ ^[12]	<i>R</i> -3 <i>c</i>	<i>a</i> = <i>b</i> = 8.8936(9), <i>c</i> = 13.052(3)	$\alpha = \beta = 90, \gamma = 120$	409688- ICSD	
α-HgB4O 7 ^[13]	Pbca	<i>a</i> = 8.3994(13), <i>b</i> = 8.8066(6), <i>c</i> = 14.1370(17)	$\alpha = \beta = \gamma = 90$	281287-ICS	
β -HgB ₄ O ₇ ^[14]	$Pmn2_1$	a = 10.656(2), b = 4.3810(9), c = 4.1872(8)	$\alpha=\beta=\gamma=90$	415347- ICSD	

 Table S1 Summary of crystallographic data of 14 ternary borates containing d^{10} configuration cations.

Table S2 Space groups, calculated band gaps and birefringence values Δn of ternary borates α -/ β -TM₃(BO₃)₂ (TM = Zn, Cd), Hg₃(BO₃)₂, α -/ β -TMB₄O₇ (TM = Zn, Hg), CdB₄O₇, Cd₂B₂O₅, and M₃(BO₃)₂ (M = Mg, Ca, Sr).

Classification	Compounds	Space group	Band	gap (eV)	An (@ 1064 nm)	
	Compounds	Space group	GGA	HSE06	Δn (w 1004 mm)	
	α -Zn ₃ (BO ₃) ₂	<i>P</i> -1	2.98	4.62	0.077	
Zn cations	β-Zn ₃ (BO ₃) ₂	C2/c	2.75	4.80 ^[15]	0.078	
	α -ZnB ₄ O ₇	Pbca	4.72	6.55	0.036	
	β-ZnB ₄ O ₇	Стст	5.33	7.38	0.025	
Cd cations	α -Cd ₃ (BO ₃) ₂	Pnnm	2.21	3.04	0.035	
	β-Cd ₃ (BO ₃) ₂	<i>P</i> -1	2.31	3.16	0.072	
	$Cd_2B_2O_5$	<i>P</i> -1	3.23	4.18	0.087	
	CdB ₄ O ₇	Pbca	4.71	5.67	0.041	
	Hg ₃ (BO ₃) ₂	<i>R</i> -3 <i>c</i>	3.33	3.87	0.239	
Hg cations	α -HgB ₄ O ₇	Pbca	3.22	4.41	0.037	
	β-HgB ₄ O ₇	$Pmn2_1$	2.30	3.43	0.021	
Alkaline-earth cations	Mg ₃ (BO ₃) ₂	Pnmn	5.47	7.15	0.029	
	Ca ₃ (BO ₃) ₂	<i>R</i> -3 <i>c</i>	5.24	6.60	0.105	
	Sr ₃ (BO ₃) ₂	<i>R</i> -3 <i>c</i>	4.81	6.23	0.099	

Species	s	n	d	Total	Charge (<i>a</i>)	Bond	Population
Species	3	P	u	a-Zn ₂ (BO ₂).	Dona	1 opulation
Zn	0.33	0.59	9 98	10.90	1 10	B-O	0.85
R	0.55	1.70	0.00	2 25	0.75	7n-0	0.35
0	1 79	5.02	0.00	6.81	-0.81	/	0.55
0	1.79	5.02	0.00	8 7n (BO	0.01	1	1
7	0.21	0.50	0.09	10.00	1.12	D O	0.95
Zn	0.31	0.59	9.98	10.88	1.12	B-0	0.85
В	0.55	1./1	0.00	2.26	0.75	Zn-O	0.33
0	1.78	5.02	0.00	6.81	-0.81	/	/
				α-ZnB ₄ O	7		
Zn	0.15	0.37	9.99	10.51	1.49	B-O	0.71
В	0.52	1.56	0.00	2.07	0.93	Zn-O	0.23
0	1.74	5.01	0.00	6.74	-0.74	/	/
				β-ZnB ₄ O	7		
Zn	0.02	0.44	9.99	10.46	1.54	B-O	0.66
В	0.59	1.56	0.00	2.15	0.85	Zn-O	0.23
0	1.73	4.98	0.00	6.71	-0.71	/	/
				a-Cd ₃ (BO ₃)2		
Cd	0.27	0.54	9.99	10.80	1.20	B-O	0.84
В	0.60	1.72	0.00	2.32	0.68	Cd-O	0.15
0	1.81	5.01	0.00	6.83	-0.83	/	/
				β-Cd ₃ (BO ₃)2		
Cd	0.30	0.50	9.99	10.79	1.21	B-O	0.84
В	0.58	1.74	0.00	2.31	0.70	Cd-O	0.16
0	1.81	5.03	0.00	6.84	-0.84	/	/
				$Cd_2B_2O_5$			
Cd	0.25	0.47	9.99	10.71	1.30	B-O	0.83
В	0.54	1.69	0.00	2.23	0 77	Cd-O	0.32

Table S3 Mulliken charge population of different atoms in ternary borates α -/ β -TM₃(BO₃)₂ (TM = Zn, Cd), Hg₃(BO₃)₂, α -/ β -TMB₄O₇ (TM = Zn, Hg), CdB₄O₇, Cd₂B₂O₅, and M₃(BO₃)₂ (M = Mg, Ca, Sr).

0	1.78	5.05	0.00	6.82	-0.82	/	/
				CdB ₄ O ₇			
Cd	0.10	0.28	9.99	10.37	1.63	B-O	0.77
В	0.52	1.56	0.00	2.08	0.92	Cd-O	0.16
0	1.74	5.02	0.00	6.76	-0.76	/	/
				Hg ₃ (BO ₃) ₂	2		
Hg	0.77	0.37	9.79	10.94	1.06	B-O	0.85
В	0.54	1.70	0.00	2.23	0.77	Hg-O	0.24
0	1.80	4.98	0.00	6.79	-0.79	/	/
Species	S	р	d	Total	Charge (e)	Bond	Population
				α-HgB ₄ O ₇	7		
Hg	0.33	0.29	9.96	10.59	1.41	B-O	0.71
В	0.52	1.55	0.00	2.06	0.94	Hg-O	0.15
0	1.74	5.00	0.00	6.74	-0.74	/	/
				β-HgB ₄ O ₇	1		
Hg	0.26	0.32	9.99	10.57	1.43	B-O	0.65
В	0.58	1.57	0.00	2.15	0.86	Hg-O	0.02
0	1.73	4.96	0.00	6.69	-0.69	/	/
				Mg ₃ (BO ₃)	2		
Mg	0.28	0.39	0.00	0.67	1.33	B-O	0.85
В	0.58	1.77	0.00	2.35	0.65	Mg-O	0.19
0	1.79	5.09	0.00	6.88	-0.88	/	/
				Ca ₃ (BO ₃) ₂	2		
Ca	2.14	6.00	0.56	8.70	1.30	B-O	0.80
В	0.51	1.71	0.00	2.22	0.78	Ca-O	0.09
0	1.80	5.11	0.00	6.91	-0.91	/	/
				Sr ₃ (BO ₃) ₂			
Sr	2.13	5.99	0.64	8.76	1.24	B-O	0.80
В	0.53	1.71	0.00	2.24	0.76	Sr-O	0.09
0	1.80	5.07	0.00	6.87	-0.87	/	/

(pmax) and fighter being gap of b o groups bo3, bo4, and b203.							
Groups	$P_{\rm x}, P_{\rm y}, P_{\rm z}$	Δα (a.u.)	$ \boldsymbol{\beta}_{\max} $ (a.u.)	HOMO-LUMO gap (eV)			
BO ₃	0.0, 0.0, 0.0	7.2	10.9	8.2			
BO ₄	0.0, 0.0, 0.0	1.0	3.2	10.9			
B ₂ O ₅	0.0. 0.2. 0.0	17.5	38.8	8.2			

Table S4 Calculated dipole moment (P), anisotropy polarizability ($\Delta \alpha$), largest hyperpolarizability tensor ($|\beta_{max}|$) and HOMO-LUMO gap of B-O groups BO₃, BO₄, and B₂O₅.

 $\label{eq:calculated} \mbox{Born effective charges of ternary borates α-/β-TM}_3(BO_3)_2 (TM = Zn, Cd), Cd_2B_2O_5,$

Compounds	Atom	q_{xx}	q_{yy}	<i>q</i> _{zz}	Δq
	Zn	2.23231	2.13125	2.18877	0.10106
α -Zn ₃ (BO ₃) ₂	В	1.84455	1.86249	2.74494	0.90039
	0	-1.73101	-1.68646	-2.00936	-0.32290
	Zn	2.16634	2.18141	2.29710	0.13076
β-Zn ₃ (BO ₃) ₂	В	1.11780	2.77683	2.51281	1.39501
	0	-1.45577	-2.01631	-1.98616	-0.56054
	Cd	2.46920	2.34877	2.30707	0.16213
α-	В	0.96846	2.91669	2.48694	1.51848
Cd ₃ (BO ₃) ₂	0	-1.55742	-2.14662	-1.98252	-0.58920
	Cd	2.39455	2.31806	2.31894	0.07649
β-Cd ₃ (BO ₃) ₂	В	2.30816	1.48933	2.35802	0.86869
	0	-1.96670	-1.65548	-1.94547	-0.31122
	Cd	2.42088	2.28868	2.40227	0.1322 \[] 0
$Cd_2B_2O_5$	В	$1.0401 \square 0$	2.98220	2.66980	1.9421 🗆 0
	0	-1.38439	-2.10835	-2.02882	-0.72396
	Hg	2.15191	2.15196	1.51073	0.64123
Hg ₃ (BO ₃) ₂	В	2.86827	2.86827	0.57078	2.29749
	0	-2.03205	-2.03207	-0.94563	-1.08644
	Mg	2.04758	2.03041	2.13336	0.10295
Mg ₃ (BO ₃) ₂					

and $M_3(BO_3)_2$ (M = Hg, Mg, Ca, Sr).

	В	1.45514	2.31796	2.48557	1.03043
	0	-1.50884	-1.78786	-1.89520	-0.38636
	Ca	2.53682	2.53686	2.18309	0.35377
Ca ₃ (BO ₃) ₂	В	2.66062	2.66063	0.70002	1.96061
	0	-2.15529	-2.14404	-1.32489	-0.83040
	Sr	2.60832	2.60828	2.20663	0.40169
Sr ₃ (BO ₃) ₂	В	2.71211	2.71210	0.56448	2.14763
	0	-2.20820	-2.20817	-1.29147	-0.91673

Table S6 Calculated optical permittivity and polarisabilities (f->infinity) of ternary borates α -/ β -

Compounds -	Optica	al Permitti	vity (<i>f</i> -> in	finity)	Optical	Polarisabi	ilities (<i>f</i> -> i	nfinity)
Compounds -	\mathcal{E}_{xx}	\mathcal{E}_{yy}	E _{zz}	Δε	P_{xx}	P_{yy}	P_{zz}	ΔP
α -Zn ₃ (BO ₃) ₂	3.23	3.15	3.34	0.19	88.64	85.48	92.90	7.42
β -Zn ₃ (BO ₃) ₂	3.07	3.36	3.39	0.32	161.47	184.69	186.81	25.34
α-	3.42	3.57	3.44	0.15	49.54	52.69	50.03	3.15
Cd ₃ (BO ₃) ₂								
β-Cd ₃ (BO ₃) ₂	3.47	3.29	3.39	0.18	52.45	48.29	50.65	4.16
$Cd_2B_2O_5$	3.04	3.26	3.36	0.32	33.95	37.67	39.25	5.30
Hg ₃ (BO ₃) ₂	4.10	4.10	3.00	1.10	220.52	220.52	142.17	78.35
Mg ₃ (BO ₃) ₂	2.74	2.74	2.81	0.07	28.23	28.28	29.41	1.18
Ca ₃ (BO ₃) ₂	3.22	3.22	2.78	0.44	135.43	135.43	108.68	26.75
Sr ₃ (BO ₃) ₂	3.17	3.17	2.72	0.45	153.71	153.71	121.93	31.78

 $TM_3(BO_3)_2$ (TM = Zn, Cd), Cd₂B₂O₅, and M₃(BO₃)₂ (M = Hg, Mg, Ca, Sr).

Compounds	Number of BO ₃ in cell (N)	Cell volume (Å ³) (V)	Density of BO ₃
			groups
α -Zn ₃ (BO ₃) ₂	8	498.73	1.60×10-2
β-Zn ₃ (BO ₃) ₂	16	981.67	1.63×10 ⁻²
α -Cd ₃ (BO ₃) ₂	6	257.41	2.33×10-2
β-Cd ₃ (BO ₃) ₂	4	266.33	1.50×10 ⁻²
$Cd_2B_2O_5$	4	209.36	1.91×10 ⁻²
Hg ₃ (BO ₃) ₂	24	894.05	2.68×10-2
Mg ₃ (BO ₃) ₂	6	204.30	2.94×10 ⁻²
Ca ₃ (BO ₃) ₂	24	765.61	3.13×10 ⁻²
Sr ₃ (BO ₃) ₂	24	889.93	2.70×10-2
(c)		(d)	
(e) (e)		(f)	B O
	0 0 0		

and $M_3(BO_3)_2$ (M = Hg, Mg, Ca, Sr).

Figure S1 Crystal structures of ternary borates α-Zn₃(BO₃)₂ (a), β-Zn₃(BO₃)₂ (b), α-ZnB₄O₇ (c), β-ZnB₄O₇ (d), α-Cd₃(BO₃)₂ (e), β-Cd₃(BO₃)₂ (f), Cd₂B₂O₅ (g), CdB₄O₇ (h), Hg₃(BO₃)₂ (i), α-HgB₄O₇ (j), β-HgB₄O₇ (k), and M₃(BO₃)₂ (M = Mg, Ca, Sr) (l-n).

Figure S2 Calculated band structures for ternary borates α -Zn₃(BO₃)₂ (a), β -Zn₃(BO₃)₂ (b), α -ZnB₄O₇ (c), β -ZnB₄O₇ (d), α -Cd₃(BO₃)₂ (e), β -Cd₃(BO₃)₂ (f), Cd₂B₂O₅ (g), CdB₄O₇ (h), Hg₃(BO₃)₂ (i), α -HgB₄O₇ (j), β -HgB₄O₇ (k), and M₃(BO₃)₂ (M = Mg, Ca, Sr) (l-n) by GGA functional, all of borates calculated band gaps by the GGA and HSE06 functional (o).

Figure S3 Density/partial density of states of ternary borates α -Zn₃(BO₃)₂ (a), β -Zn₃(BO₃)₂ (b), α -ZnB₄O₇ (c), β -ZnB₄O₇ (d), α -Cd₃(BO₃)₂ (e), β -Cd₃(BO₃)₂ (f), Cd₂B₂O₅ (g), CdB₄O₇ (h), Hg₃(BO₃)₂ (i), α -HgB₄O₇ (j), β -HgB₄O₇ (k), and M₃(BO₃)₂ (M = Mg, Ca, Sr) (l-n).

Figure S4 Ternary borates α -/ β -TM₃(BO₃)₂ (TM = Zn, Cd), Cd₂B₂O₅, and M₃(BO₃)₂ (M = Hg, Mg, Ca,

Sr): compared with the HSE06 band gaps (a) and O (2*p*) bandwidth (b).

Figure S5 Calculated birefringence Δ*n* of ternary borates α-Zn₃(BO₃)₂ (a), β-Zn₃(BO₃)₂ (b), α-ZnB₄O₇ (c), β-ZnB₄O₇ (d), α-Cd₃(BO₃)₂ (e), β-Cd₃(BO₃)₂ (f), Cd₂B₂O₅ (g), CdB₄O₇ (h), Hg₃(BO₃)₂ (i), α-HgB₄O₇ (j), β-HgB₄O₇ (k), and M₃(BO₃)₂ (M = Mg, Ca, Sr) (l-n).

Figure S6 Borates α -Cd₃(BO₃)₂ and Cd₂B₂O₅: IR spectra and thermal analysis. (a) and (b) are IR and thermal of α -Cd₃(BO₃)₂, (c) and (d) are those of Cd₂B₂O₅.

To further determine the coordination of B atoms of α -Cd₃B₂O₆, the IR spectrum is measured within range of wavenumber from 400 to 4000 cm⁻¹ (Figure S6a) and the polycrystalline samples were mixed

with dried KBr in a molar ratio of 1:100 approximately. According to Figure S6a, the strong peaks at the range of 1338 to 1003 cm⁻¹ are ascribed to antisymmetric stretch of BO₃ groups while other peaks below 974 cm⁻¹ mainly from the bending mode of BO₃ units. The results are in accordance with other compounds containing BO₃ anionic groups. In order to evaluate the thermal stability of α -Cd₃B₂O₆, thermal gravimetric (TG) analysis and differential scanning calorimetry (DSC) data are collected at the temperature range of 40 to 1000 °C. The TGA and DSC curves of α -Cd₃B₂O₆ are shown in the Figure S6b, and blue line is the TG curve. It can be seen there is a weight loss about 5% in the heating and cooling process. This loss may attribute to the decomposition of boron at high temperature. Black line represents the DSC curve, and it shows two endothermic peaks at 853 and 969 °C in the heating process, and one exothermic peak at around 894 °C in the cooling process.

The IR spectrum of $Cd_2B_2O_5$ depicts in Figure S6c, and the peaks from 1420 to 1241 cm⁻¹ and 1140 to 1003 cm⁻¹ can be assigned to the asymmetric and symmetric stretching vibrations of the BO₃ groups, respectively. The peaks below 803 cm⁻¹ are caused by the distortion modes. The Figure S6d reveals the TG and DSC curves. The blue line is TG curve, and there are about 5% weight loss in the process of heating and cooling. The black line represents the DSC curve, and there is one endothermic peak at 966 °C in the heating curve and two exothermic peaks at 943 and 931 °C in the cooling curve.

Figure S7 Calculated IR spectra of α -Cd₃(BO₃)₂ (a) and Cd₂B₂O₅ (b).

Reference

- [1] J. Kang, Q. Jing, Y. Yang, S. L. Pan and Z. H. Yang, Mater. Focus, 2015, 4, 50-57.
- [2] P. S. Verdier and S. G. Blanco, Z. Kristallogr., 1980, 151, 175-177.
- [3] W. T. A. Harrison, T. E. Gier and G. D. Stucky, *Angew. Chem. Int. Ed.*, 1993, **105**, 788-790.
- [4] B. Winkler, A. G. C. Guzman, L. Wiehl, L. Bayarjargal and V. Milman, *Solid State Sci.*, 2012, 14, 1080-1085.
- [5] H. Huppertz and G. Heymann, *Solid State Sci.*, 2003, **5**, 281-289.
- [6] X. A. Chen, H. P. Xue, X. N. Chang, L. Zhang, Y. H. Zhao, J. L. Zuo, H. G. Zang and W. Q. Xiao, J. Alloys Compd., 2006, 425, 96-100.
- [7] Y. R. Shi, Y. Wen, M. D. Que, G. Zhu and Y. H. Wang, *Dalton Trans.*, 2014, 43, 2418-2423.
- [8] J. S. Knyrim, H. Emme, M. Döblinger, O. Oeckler, M. Weil and H. Huppertz, *Chem. Eur. J.*, 2008, 14, 6149-6154.
- [9] M. Ihara and J. K. Moe, Acta Crystallogr., 1966, 20, 132-134.
- [10] Y. H. Zhao, X. A. Chen, X. A. Chang, J. L. Zuo and M. Li, Acta Crystallogr., 2007, E63, i50i52.
- [11] X. W. Zhang, H. W. Yu, H. P. Wu, S. L. Pan, A. Q. Jiao, B. B. Zhang and Z. H. Yang, *RSC Adv.*, 2014, 4, 13195-13200.
- [12] M. Weil, Z. Kristallogr. NCS, 2003, 218, 155-156.
- [13] M. Weil, Acta Crystallogr., 2003, E59, i40-i42.
- [14] H. Emmea, M. Wei and H. Huppertza, Z. Naturforsch., 2005, 60, 815-820.
- [15] B. Bashir, B. B. Zhang, S. L. Pan and Z. H. Yang, J. Alloys Compd., 2018, 758, 85-90.