Supporting Information for

Lanthanum complexes stabilized by a pentadentate schiff-base ligand:

synthesis, characterization, and reactivity in statistical

copolymerization of ɛ-caprolactone and L-lactide

Jingjing Shao,¹ Hairong Zhou,¹ Yaorong Wang,^{1,*} Yunjie Luo,^{2,*} and Yingming

Yao^{1,*}

¹ College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P. R. China

² School of Material Science and Chemical Engineering, Ningbo University, Ningbo

315211, P. R. China

*To whom correspondence should be addressed. Email: yrwang@suda.edu.cn, luoyunjie@nbu.edu.cn, yaoym@suda.edu.cn

Contents

- Fig. S1 ¹H NMR spectrum of complex 1 in THF- d_8
- Fig. S2. ¹³C NMR spectrum of complex 1 in THF- d_8
- Fig. S3. ¹H NMR spectrum of complex 2 in THF- d_8
- Fig. S4. ¹³C NMR spectrum of complex 2 in THF- d_8
- Fig. S5. The structure of complex 2
- Fig. S6. ¹H NMR spectrum of complex 3 in THF- d_8
- Fig. S7. ¹³C NMR spectrum of complex **3** in THF- d_8
- Fig. S8. ¹H NMR spectrum of complex 4 in THF- d_8
- Fig. S9. ¹³C NMR spectrum of complex 4 in THF- d_8
- Fig. S10. The structure of complex 4
- Fig. S11. ¹H NMR spectrum of complex 5 in THF- d_8
- Fig. S12. ¹³C NMR spectrum of complex 5 in THF- d_8
- Fig. S13. The structure of complex 5
- Fig. S14. ¹H NMR spectrum of complex 6 in THF- d_8

Fig. S15. ¹³C NMR spectrum of complex 6 in THF- d_8

Fig. S16. ¹H NMR spectrum of homopolymer of L-LA in CDCl₃: Entry 4 in Table 1. Fig. S17. ¹H NMR spectrum of copolymer of L-LA and ε -CL: Entry 2 in Table 2 Fig. S18. ¹³C NMR spectrum of copolymer of L-LA and ε-CL: Entry 2 in Table 2 Fig. S19. ¹H NMR spectrum of copolymer of L-LA and ε-CL: Entry 4 in Table 2 Fig. S20. ¹³C NMR spectrum of copolymer of L-LA and ε-CL: Entry 4 in Table 2 Fig. S21. ¹H NMR spectrum of copolymer of L-LA and ε-CL: Entry 5 in Table 2 Fig. S22. ¹³C NMR spectrum of copolymer of L-LA and ε-CL: Entry 5 in Table 2 Fig. S23. ¹H NMR spectrum of copolymer of L-LA and ε -CL: Entry 6 in Table 2 Fig. S24. ¹³C NMR spectrum of copolymer of L-LA and ε-CL: Entry 6 in Table 2 Fig. S25. ¹H NMR spectrum of copolymer of L-LA and ε -CL: Entry 7 in Table 2 Fig. S26. ¹³C NMR spectrum of copolymer of L-LA and ε-CL: Entry 7 in Table 2 Fig. S27. ¹H NMR spectrum of copolymer of L-LA and ε-CL: Entry 9 in Table 2 Fig. S28. ¹³C NMR spectrum of copolymer of L-LA and ε-CL: Entry 9 in Table 2 Fig. S29. ¹H NMR spectrum of copolymer of L-LA and ε-CL: Entry 11 in Table 2 Fig. S30. ¹³C NMR spectrum of copolymer of L-LA and ε-CL: Entry 11 in Table 2 Fig. S31-41. GPC traces of the resulting copolymer obtained by complexes: Entry 1-11 in Table 2

Fig. S42-50. DSC curves of the resulting copolymer obtained by complex 3: Entry 1-9 in Table 3

Fig. S51. ¹H NMR spectrum of copolymer of L-LA and ϵ -CL (Sequential copolymerization of LA and CL)

Fig. S52. ¹H NMR spectrum of copolymer of ϵ -CL and L-LA (Sequential copolymerization of CL and LA)

Table S1 Sequential copolymerization of LA and CL initiated by complex 3

 Table S2 Sequential copolymerization of CL and LA initiated by complex 3

Table S3 Crystallographic data for complexes 1-5

Table S4 Select bond lengths (Å) and bond angles (deg) for complexes 1-5

Fig. S1 ¹H NMR spectrum of complex 1 in THF- d_8

Fig. S2. ¹³C NMR spectrum of complex 1 in THF- d_8

Fig. S4. ¹³C NMR spectrum of complex 2 in THF- d_8

Fig. S5. The structure of complex 2

Fig.S9. ¹³C NMR spectrum of complex 4 in THF- d_8

Fig. S10. The structure of complex 4

Fig. S12. ¹³C NMR spectrum of complex 5 in THF- d_8

Fig. S14. ¹H NMR spectrum of complex 6 in THF- d_8

Fig. S18. ^{13}C NMR spectrum of copolymer of L-LA and $\epsilon\text{-CL}:$ Entry 2 in Table 2

Fig. S22. ^{13}C NMR spectrum of copolymer of L-LA and $\epsilon\text{-CL}$: Entry 5 in Table 2

Fig. S24. ^{13}C NMR spectrum of copolymer of L-LA and $\epsilon\text{-CL}:$ Entry 6 in Table 2

Fig. S30. ^{13}C NMR spectrum of copolymer of L-LA and $\epsilon\text{-CL}$: Entry 11 in Table 2

Fig. S34. GPC trace of resulting copolymer obtained by complex 3: Entry 4 in Table 2

Fig. S38. GPC trace of resulting copolymer obtained by complex 3: Entry 8 in Table 2

Fig. S40. GPC trace of resulting copolymer obtained by complex 3: Entry 10 in Table

Fig. S41. GPC trace of resulting copolymer obtained by complex 3: Entry 11 in Table

2

Fig. S42. DSC curve of the resulting copolymer obtained by complex 3: Entry 1 in

Table 3

Fig. S43. DSC curve of the resulting copolymer obtained by complex 3: Entry 2 in Table 3

Fig. S44. DSC curve of the resulting copolymer obtained by complex 3: Entry 3 in

Table 3

Fig. S45. DSC curve of the resulting copolymer obtained by complex 3: Entry 4 in Table 3

Fig. S46. DSC curve of the resulting copolymer obtained by complex 3: Entry 5 in

Table 3

Fig. S47. DSC curve of the resulting copolymer obtained by complex 3: Entry 6 in

Table 3

Fig. S48. DSC curve of the resulting copolymer obtained by complex 3: Entry 7 in

Fig. S49. DSC curve of the resulting copolymer obtained by complex 3: Entry 8 in

Table 3

Fig. S50. DSC curve of the resulting copolymer obtained by complex 3: Entry 9 in Table 3

Fig. S51. ¹H NMR spectrum of copolymer of L-LA and ε-CL (Sequential copolymerization of LA and CL)

Fig. S52. ¹H NMR spectrum of copolymer of ϵ -CL and L-LA (Sequential

copolymerization of CL and LA)

Table S1 Sequential copolymerization of LA and CL initiated by complex 3^a									
Entry	Cat.	1 st feed		2 nd feed		C		CL-	
		[LA] ₀ :[I] ₀	t_1	[CL] ₀	t_2	C_{CL} , C_{LA}^{b} (%)	(%)	LA/CL- CL ^d	
1	3	200:1	2 min	200	3 h	99, 99	50:50	78:22	
^a Polymerization conditions: $([s-CL]_{a} + [L-LA]_{a})$: $[I]_{a} = 400.1$ in toluene 60 °C 3h									

^{<i>a</i>} Polymerization conditions: $([\epsilon-CL]_0 + [L-LA]_0): [I]_0 = 400:1$, in toluene, 60 °C, 3h.
^b Monomer conversion was determined by ¹ H NMR spectroscopy. ^c CL/LA molar
ratio in the copolymer. ^d (CL-LA)/(CL-CL) in the copolymer.

Table S2 Sequential copolymeriz	ation of CL and LA initia	ted by the complex 3^a
1st C J	and for a	CI

		1 st feed		2 nd Ieed		C	CI I AC	CL-
Entry	Cat.					C _{CL} ,	CL.LA	LA/CL-
		$[CL]_0:[I]_0$	t_1	$[LA]_0$	t_2	$C_{LA^b}(\%)$	(%)	CL^d
1	3	200:1	2 min	200	3 h	99, 40	70:30	0:100
^a Polym	nerizatio	on conditions	: ([ɛ-CL]) + [L-LA	$A]_0):[I]$	$]_0 = 400:1, i$	n toluene,	60 °C, 3h.
1				1.1 1.7.7			~~ /~	

^b Monomer conversion was determined by ¹H NMR spectroscopy. ^c CL/LA mole ratio in the copolymer. ^d (CL-LA)/(CL-CL) in the copolymer.

Complex	1·2.5THF	2·THF	3 ·4THF	4·3THF	5·4THF
Formula	$C_{63}H_{102}N_3O_{6.}$	C46H76N3O5L	C ₉₀ H ₁₄₈ N ₆ O ₁₀ L	C ₉₄ H ₁₄₀ N ₆ O ₉ L	C ₈₈ H ₁₄₄ N ₆ O ₁₀ L
M_r	1144.39	890.01	1751.97	1775.94	1723.91
<i>T</i> /K	223(2)	223(2)	223(2)	223(2)	223(2)
Crystal	Tetragonal	Triclinic	Triclinic	Triclinic	Triclinic
Space	I 41/a	P -1	P -1	P -1	P -1
Crystal	0.50×0.40×0.	0.75×0.40×0.3	0.50×0.40×0.4	0.50×0.40×0.4	0.40×0.20×0.2
a/Å	28.6963(3)	10.3685(4)	12.1234(6)	12.9998(5)	12.0092(6)
$b/{ m \AA}$	28.6963(3)	13.2339(5)	13.8634(5)	14.5735(5)	13.9383(6)
$c/{ m \AA}$	33.2864(6)	18.9841(8)	15.2486(6)	15.2374(7)	14.9998(5)
$\alpha/^{\circ}$	90.00	101.370(3)	94.997(3)	114.717(4)	95.089(3)
$eta / ^{\circ}$	90.00	105.032(4)	107.017(4)	101.976(4)	107.153(4)
γ/°	90.00	92.632(3)	104.611(4)	104.959(3)	104.278(4)
$V/Å^3$	27410.6(7)	2453.43(17)	2355.25(18)	2364.13(16)	2287.12(17)
Ζ	8	2	1	1	1
$D_c/g \cdot cm^{-3}$	1.109	1.205	1.246	1.247	1.251
μ/mm^{-1}	0.669	0.913	7.402	0.947	0.970
<i>F</i> (000)	9760	940	924	932	908
$ heta_{max}/^{\circ}$	26.4	26.4	73.9	26.4	26.4

Table S3 Crystallographic data for complexes 1-5

Collect	62531	22733	16901	23213	21967
Unique	14028	9994	9463	9648	9331
No. of	659	489	488	484	425
GOF	1.109	1.065	1.050	1.058	1.090
R	0.0474	0.0452	0.0520	0.0392	0.0948
wR_2	0.1426	0.1181	0.1365	0.1018	0.2627
R _{int}	0.0389	0.0343	0.0546	0.0336	0.1480

Bond	1	2	Bond	3	4	5
La-O1	2.318(3)	2.357(3)	La1-O1	2.339(3)	2.365(2)	2.346(5)
La-O2	2.358(3)	2.346(3)	La1-O2	2.370(3)	2.320(2)	2.327(4)
La-O3	2.286(3)	2.203(3)	La1-O3	2.463(3)	2.468(2)	2.446(5)
La-O4	2.703(3)	2.671(3)	La1-O3A	2.423(3)	2.439(2)	2.425(5)
La-N1	2.722(3)	2.761(3)	La1-N1	2.652(4)	2.619(3)	2.652(6)
La-N2	2.767(3)	2.764(3)	La1-N2	2.827(4)	2.805(3)	2.795(6)
La-N3	2.693(3)	2.679(4)	La1-N3	2.657(4)	2.638(3)	2.648(6)
Bond	1	2	Bond angles	3	4	5
O2-La-N3	67.80(10)	68.40(11)	O1-La1-N1	69.41(12)	68.07(8)	67.43(17)
N1-La-N3	115.64(10)	122.53(13)	O2-La1-N1	87.34(14)	152.52(9)	151.70(2)
N1-La-O1	67.43(10)	66.66(9)	O3-La1-N1	110.08(13)	115.41(9)	112.27(18)
O2-La-O1	96.10(9)	98.97(9)	O1-La1-O3A	112.37(12)	92.75(8)	90.90(17)
N1-La-O3	108.72(11)	113.15(10)	O3-La1-O3A	68.76(12)	68.04(9)	68.58(18)
O4-La-O3	175.34(10))					

Table S4 Select bond lengths (\AA) and bond angles (deg) for complexes 1-5