Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting Information

A designed and potentially decadentate ligand for use in lanthanide(III) catalysed biomass

transformations: Targeting diastereoselective trans-4,5-diaminocyclopentenone

derivatives.

Krisana Peewasan,* ^a Marcel P. Merkel,^b Olaf Fuhr ^{b,c} and Annie K. Powell* ^{a,b}

1.	General consideration	.2
2.	Preparation of N,N'-dimethyl-N,N'-ethylene-bis(5-bromo-3-(1H-benzimidazol-2-	
	yl)hydrazineylidene)-2-hydroxybenzylamine) (LH ₆)	2
3.	Preparation of single lanthanide complexes	5
4.	Catalytic properties study	23
5.	Crystal structural data	37
6.	SHAPE analysis	39

General considerations. All reagents and solvents were used as received from commercial supplies without further purification. To determine the carbon, hydrogen, nitrogen and sulfur fractions of the samples, elemental analysis was carried out using a "Vario Micro Cube" device from Perkin Elmer. Infrared spectra were recorded on a Perkin Elmer Spectrum GX FT-IR spectrometer as KBr pellets in the range 400 cm-1 to 4000 cm-1 with a resolution of 8 cm-1. The following abbreviations were used to describe the peak characteristics: br = broad, sh = shoulder, s = strong, m = medium and w = weak. NMR spectra of the compounds were measured using a Bruker Ultrashield plus 500 (500 MHz) and Varian 500 MHz spectrometer. 1H- and 13C-measurements were recorded using deuterated solvents and referenced to tetramethylsilane (TMS) as an internal standard ($\delta = 0$ ppm). The structures were measured using single crystal X-ray diffraction (SCXRD) on area detector diffractometers: STADIVARI (Mo-K α , λ = 0.71073 Å; Cu-K α , λ = 1.5405 Å, detector: Dectris Pilatus 300K (detector: CMOS)) and STADIVARI (Ga-K α , λ = 1.34143 Å, detector: Dectris Eiger2 R 4M (detector type: HPC)) (STOE). The measurements were taken at temperatures of 150 K and 180 K. The crystals were attached to the goniometer head with perfluoroether oil. Powder X-ray diffraction (PXRD) measurements were performed on an STOE STADI-P diffractometer with Cu-Ka radiation.

Preparation of *N,N*'-dimethyl-*N,N*'-ethylene-bis(5-bromo-3-(1H-benzimidazol-2-

yl)hydrazineylidene)-2-hydroxybenzylamine) (LH₆)

Synthesis of the ligand LH₆ was performed by the condensation reaction between *N*,*N*'-dimethyl-*N*,*N*'-ethylene-di(5-bromo-3-formyl-2-hydroxybenzylamine) (1) and 2-Hydrazino-1H-1,3-benzimidazole (2) under reflux in absolute ethanol for 2 hours. After completion of the reaction, yellow solid was filtered, washed with cooled ethanol and dried under reduced pressure.

Scheme1. Preparation of Schiff-base ligand LH₆.

Synthesis: LH₆

N,*N*'-dimethyl-*N*,*N*'-ethylene-di(5-bromo-3-formyl-2-hydroxybenzylamine (**1**) (10.91 mmol, 1.650 g) and 2-Hydrazino-1H-1,3-benzimidazole (**2**) (8.71 mmol, 1.326 g) were dissolved in absolute EtOH (100 mL). The resulting mixture was refluxed 2h. After completion of the reaction, the yellow solid was filtered, washed with cooled ethanol and dried under reduced pressure to obtain (93% yield). ¹H NMR (500 MHz, DMSO-d₆) = δ 11.60 (s, 4 H), 8.32 (s, 2H), 8.02 (d, J= 2.6 Hz, 2H), 7.29 (d, J = 2.6, Hz, 2H), 7.24 (t, J = 8.0 Hz, 4H), 7.01-6.95 (m, 4H), 3.74 (s, 4H), 2.66 (s, 4H), 2.23 (s, 6H). ¹³C NMR (126 MHz, DMSO-d₆) = δ 154.6 (CH), 151.81 (C), 148.03 (C), 154.6 (C), 153.4 (C), 131.0 (C), 126.8 (CH), 125.7 (CH), 123.0 (CH), 120.4 (CH), 110.2 (2×CH), 109.0 (CH), 27.8 (CH₂), 52.9 (CH₂), 40.6 (CH₂), KBr: 3443s, 2812s, 1650s, 1609m, 1572m, 1514s, 1459s, 1341w, 1268m, 1145m, 1021m, 741s, 491m.

Figure S1. IR spectra of Schiff-base LH₆ in KBr pallet.

FigureS2. NMR spectra of Schiff-base LH₆.

Preparation of single lanthanide complexes

General procedure: A solution of the Schiff-base ligand LH_6 (0.1 mmol, 77.4 mg) in methanol (10 mL) was added a solution of Ln(III) (0.1 mmol) in 1:1 acetonitrile-methanol (10 mL). The resulting mixture was stirred at room temperature for 1 h. After being filtrated the pale yellow solution was left to stand at ambient temperature to allow for solvent evaporation. After 7 days, well-shaped crystals of the complex were observed. The product could be obtained in the form of powder in higher yield by extensive stirring and extending the reaction time up to 2h.

Figure S3. PXRD of measured $C_{34}H_{34}Br_2DyN_{13}O_{11}$ Crystal and powder form compare to simulation of $C_{34}H_{34}Br_2SmN_{13}O_{11}$

Figure S4. PXRD of measured **Ln(III)LH**₆ and simulation, a) 10-fold coordination and b) 8-fold coordination.

Figure S5. Comparison of IR spectra of Schiff-base LH₆ and SmLH₆ in KBr pallet.

C₃₄**H**₃₄**Br**₂**LaN**₁₃**O**₁₁; Yield 72% (based on La(NO₃)₂•6H₂O). Elemental analysis calcd for (**C**₃₄**H**₃₄**Br**₂**LaN**₁₃**O**₁₁): C, 37.14%; H, 3.12%; N, 16.65%. Found: C, 36.98%; H, 3.22%; N, 16.68%. FT-IR (cm⁻¹) KBr: 3379m, 3240w, 3062w, 1612s, 1591s, 1537m, 1462s, 1424s, 1386s, 1301s, 1238s, 1216m, 1118m, 1068w, 1033w, 947w, 872w, 736m.

Figure S6. IR spectra of C₃₄H₃₄Br₂LaN₁₃O₁₁ in KBr pallet.

Figure S7. PXRD of measured C₃₄H₃₄Br₂GdN₁₃O₁₁ and simulated C₃₄H₃₄Br₂SmN₁₃O₁₁

C₃₄**H**₃₄**Br**₂**CeN**₁₃**O**₁₁; Yield 83% (based on La(NO₃)₂•6H₂O). Elemental analysis calcd for (**C**₃₄**H**₃₄**Br**₂**LaN**₁₃**O**₁₁•**H**₂**O**): C, 36.51%; H, 3.24%; N, 16.28%. Found: C, 36.43%; H, 3.30%; N, 16.51%. FT-IR (cm⁻¹) KBr: 3414s, 3062w, 2962w, 1615s, 1594m, 1541w, 1461s, 1425m, 1382s, 1295m, 1243m, 1120m, 1034w, 954w, 874w, 815w, 732w.

Figure S8. IR spectra of C₃₄H₃₄Br₂CeN₁₃O₁₁ in KBr pallet.

Figure S9. PXRD of measured C₃₄H₃₄Br₂CeN₁₃O₁₁ and simulated C₃₄H₃₄Br₂SmN₁₃O₁₁

C₃₄**H**₃₄**Br**₂**PrN**₁₃**O**₁₁; Yield 83% (based on Pr(NO₃)₂•6H₂O). Elemental analysis calcd for (**C**₃₄**H**₃₄**Br**₂**PrN**₁₃**O**₁₁•**H**₂**O**): C, 36.48%; H, 3.24%; N, 16.27%. Found: C, 36.56%; H, 3.26%; N, 16.50%. FT-IR (cm⁻¹) KBr: 3389m, 3245w, 3067w, 1616s, 1587m, 1543w, 1465s, 1420s, 1388s, 1236s, 1218w, 1122m, 1069w, 1034w, 950w, 876w, 816w, 779w, 729m.

Figure S10. IR spectra of C₃₄H₃₄Br₂PrN₁₃O₁₁ in KBr pallet.

Figure S11. PXRD of measured C₃₄H₃₄Br₂PrN₁₃O₁₁ and simulated C₃₄H₃₄Br₂SmN₁₃O₁₁

C₃₄**H**₃₄**Br**₂**NdN**₁₃**O**₁₁; Yield 78% (based on Nd(NO₃)₂•5H₂O). Elemental analysis calcd for (**C**₃₄**H**₃₄**Br**₂**NdN**₁₃**O**₁₁•**H**₂**O**): C, 36.96%; H, 3.10%; N, 16.48%. Found: C, 36.59%; H, 3.30%; N, 16.58%. FT-IR (cm⁻¹) KBr: 3389s, 3051w, 1620s, 1538m, 1464s, 1423s, 1382s, 1301s, 1239m, 1127m, 1071w, 1035w, 954w, 871w, 815w, 733m.

Figure S12. IR spectra of C₃₄H₃₄Br₂NdN₁₃O₁₁ in KBr pallet.

Figure S13. PXRD of measured C₃₄H₃₄Br₂NdN₁₃O₁₁ and simulated C₃₄H₃₄Br₂SmN₁₃O₁₁

C₃₄H₃₄Br₂SmN₁₃O₁₁; Yield 79% (based on Sm(NO₃)₂•5H₂O). Elemental analysis calcd for (C₃₄H₃₄Br₂SmN₁₃O₁₁•H₂O): C, 36.16%; H, 3.21%; N, 16.13%. Found: C, 36.05%; H, 3.23%; N, 16.18%. FT-IR (cm⁻¹) KBr: 3391m, 1616s, 1592s, 1543m, 1460s, 1420s, 1383s, 1307s, 1241s, 1121s, 1028w, 1031w, 954w, 873w, 816w, 735m.

Figure S14. IR spectra of C₃₄H₃₄Br₂SmN₁₃O₁₁ in KBr pallet.

11

Figure S15. PXRD of measured C₃₄H₃₄Br₂SmN₁₃O₁₁ and simulated C₃₄H₃₄Br₂SmN₁₃O₁₁

C₃₄**H**₃₄**Br**₂**EuN**₁₃**O**₁₁; Yield 82% (based on Eu(NO₃)₂•5H₂O). Elemental analysis calcd for (**C**₃₄**H**₃₄**Br**₂**EuN**₁₃**O**₁₁•**H**₂**O**): C, 36.12%; H, 3.21%; N, 16.11%. Found: C, 36.12%; H, 3.29%; N, 16.23%. FT-IR (cm⁻¹) KBr: 3359s, 1622m, 1592s, 1542m, 1426m, 1380s, 1306s, 1239s, 1121s, 1071w, 1031w, 953w, 874w, 814w, 780w, 736m.

Figure S16. IR spectra of C₃₄H₃₄Br₂EuN₁₃O₁₁ in KBr pallet.

Figure S17. PXRD of measured C₃₄H₃₄Br₂EuN₁₃O₁₁ and simulated C₃₄H₃₄Br₂SmN₁₃O₁₁

C₃₄**H**₃₄**Br**₂**GdN**₁₃**O**_{11;} Yield 86% (based on Gd(NO₃)₂•6H₂O). Elemental analysis calcd for (**C**₃₄**H**₃₄**Br**₂**GdN**₁₃**O**₁₁•**H**₂**O**): C, 35.95%; H, 3.19%; N, 16.03%. Found: C, 36.05%; H, 3.24%; N, 16.21%. FT-IR (cm⁻¹) KBr: 3391m, 1623s, 1588s, 1540m, 1463s, 1425s, 1380s, 1306s, 1238s, 1119s, 1028m, 956w, 734m.

Figure S18. IR spectra of C₃₄H₃₄Br₂GdN₁₃O₁₁ in KBr pallet.

Figure S19. PXRD of measured C₃₄H₃₄Br₂GdN₁₃O₁₁ and simulated C₃₄H₃₄Br₂GdN₁₃O₁₁

C₃₄**H**₃₄**Br**₂**TbN**₁₃**O**₁₁; Yield 75% (based on Tb(NO₃)₂•5H₂O). Elemental analysis calcd for (**C**₃₄**H**₃₄**Br**₂**TbN**₁₃**O**₁₁•**H**₂**O**): C, 35.90%; H, 3.19%; N, 16.01%. Found: C, 35.82%; H, 3.20%; N, 16.15%. FT-IR (cm⁻¹) KBr: 3391s, 1621s, 1589m, 1543m, 1466s, 1427m, 1379s, 1308s, 1241m, 1218m, 1118m, 1028w, 1030w, 948w, 847w, 816w, 732m.

Figure S20. IR spectra of C₃₄H₃₄Br₂TbN₁₃O₁₁ in KBr pallet.

Figure S21. PXRD of measured C₃₄H₃₄Br₂TbN₁₃O₁₁ and simulated C₃₄H₃₄Br₂SmN₁₃O₁₁

C₃₄**H**₃₄**Br**₂**DyN**₁₃**O**₁₁; Yield 79% (based on Dy(NO₃)₂•5H₂O). Elemental analysis calcd for (**C**₃₄**H**₃₄**Br**₂**DyN**₁₃**O**₁₁•**H**₂**O**): C, 35.79%; H, 3.18%; N, 15.96%. Found: C, 35.61%; H, 3.16%; N, 15.91%. FT-IR (cm⁻¹) KBr: 3389m, 1627s, 1537m, 1468s, 1428s, 1381s, 1309s, 1244s, 1125s, 1028w, 953w, 872w, 735m.

Figure S22. IR spectra of C₃₄H₃₄Br₂DyN₁₃O₁₁ in KBr pallet.

Figure S23. PXRD of measured $C_{34}H_{34}Br_2DyN_{13}O_{11}$ and simulated $C_{34}H_{34}Br_2SmN_{13}O_{11}$

C₃₄**H**₃₄**Br**₂**HoN**₁₃**O**₁₁; Yield 84% (based on Ho(NO₃)₂•5H₂O). Elemental analysis calcd for (**C**₃₄**H**₃₄**Br**₂**HoN**₁₃**O**₁₁•**H**₂**O**): C, 35.71%; H, 3.17%; N, 15.92%. Found: C, 35.32%; H, 3.08%; N, 16.02%. FT-IR (cm⁻¹) KBr: 3435s, 1621s, 1589m, 1545w, 1456s, 1380m, 1298s, 1246m, 1227m, 1072w, 1029w, 1028w, 941w, 847w, 822w, 816w, 736m.

Figure S24. IR spectra of C₃₄H₃₄Br₂HoN₁₃O₁₁ in KBr pallet.

Figure S25. PXRD of measured C₃₄H₃₄Br₂HoN₁₃O₁₁ and simulated C₃₄H₃₄Br₂SmN₁₃O₁₁

C₃₄**H**₃₄**B**r₂**E**r**N**₁₃**O**₁₁; Yield 80% (based on Er(NO₃)₂•5H₂O). Elemental analysis calcd for (C₃₄H₃₄Br₂YbN₁₃O₁₁): C, 36.21%; H, 3.04%; N, 16.15%. Found: C, 35.61%; H, 3.16%; N, 15.91%. FT-IR (cm⁻¹) KBr: 3414s, 1617s, 1463s, 1384s, 1319s, 1241w, 1154w, 1120w, 1077w, 1035w, 948w, 812w, 744w.

Figure S26. IR spectra of C₃₄H₃₄Br₂ErN₁₃O₁₁ in KBr pallet.

Figure S27. PXRD of measured C₃₄H₃₄Br₂ErN₁₃O₁₁ and simulated C₃₄H₃₄Br₂ErN₁₃O₁₁

C₃₄H₃₄Br₂TmN₁₃O₁₁; Yield 82% (based on Tm(NO₃)₂•5H₂O). Elemental analysis calcd for (C₃₄H₃₄Br₂TmN₁₃O₁₁•H₂O): C, 35.59%; H, 3.16%; N, 15.87%. Found: C, 35.02%; H, 3.34%; N,

15.82%. FT-IR (cm⁻¹) KBr: 3436s, 1639s, 1447s, 1381s, 1300s, 1248m, 1226m, 1077w, 1032w, 942w, 868w, 826w, 760w, 745w.

Figure S28. IR spectra of C₃₄H₃₄Br₂TmN₁₃O₁₁ in KBr pallet.

Figure S29. PXRD of measured C₃₄H₃₄Br₂TmN₁₃O₁₁ and simulated C₃₄H₃₄Br₂SmN₁₃O₁₁

C₄₀**H**₄₃**Br**₂**YbN**₁₆**O**₁₁; Yield 69% (based on Yb(NO₃)₂•5H₂O). Elemental analysis calcd for (C₃₄H₃₄Br₂YbN₁₃O₁₁•**3H₂O**): C, 34.39%; H, 3.39%; N, 15.33%. Found: C, 34.14%; H, 3.61%; N, 15.75%. FT-IR (cm⁻¹) KBr: 3436s, 1614s, 1591s, 1533w, 1487m, 1451s, 1382s, 1321m, 1295m, 1250m, 1116w, 1073w, 1030w, 945w, 881w, 824w, 738m.

Figure S30 IR spectra of C₃₄H₃₄Br₂YbN₁₃O₁₁ in KBr pallet.

Figure S31. PXRD of measured C₃₄H₃₄Br₂YbN₁₃O₁₁ and simulated C₃₄H₃₄Br₂YbN₁₃O₁₁

C₃₄**H**₃₄**Br**₂**LuN**₁₃**O**₁₁; Yield 77% (based on Lu(NO₃)₂•5H₂O). Elemental analysis calcd for (**C**₃₄**H**₃₄**Br**₂**LuN**₁₃**O**₁₁•2**H**₂**O**): C, 34.86%; H, 3.27%; N, 15.54%. Found: C, 34.73%; H, 3.13%; N, 15.38%. FT-IR (cm⁻¹) KBr: 3436s, 1614s, 1591s, 1533w, 1487m, 1451s, 1382s, 1321m, 1295m, 1250m, 1116w, 1073w, 1030w, 945w, 881w, 824w, 738m.

Figure S32. IR spectra of C₃₄H₃₄Br₂LuN₁₃O₁₁ in KBr pallet.

Figure S33. PXRD of measured C₃₄H₃₄Br₂LuN₁₃O₁₁ and simulated C₃₄H₃₄Br₂YbN₁₃O₁₁

C₃₄**H**₃₄**Br**₂**YN**₁₃**O**₁₁: Yield 67% (based on Y(NO₃)₂•6H₂O). Elemental analysis calcd for (**C**₃₄**H**₃₄**Br**₂**YN**₁₃**O**₁₁): C, 38.91%; H, 3.27%; N, 17.35%. Found: C, 38.71%; H, 3.53%; N, 17.40%. FT-IR (cm⁻¹) KBr: 3390s, 3242w, 3056w, 1621s, 1540m, 1463s, 1429m, 1380s, 1310s, 1240s, 1118m, 1030w, 651w, 874w, 813w, 779w, 734m.

Figure S34. The structure of **YLH**₆. Colour codes for the atoms: light blue (Y), blue (N), red (O) black (C) and brow (Br). The hydrogen bond highlight in green dash line. Solvent molecules (MeCN) in lattice and H atoms are omitted for clarity.

Figure S35. IR spectra of C₃₄H₃₄Br₂LuN₁₃O₁₁ in KBr pallet.

Figure S36. PXRD of measured C₃₄H₃₄Br₂YN₁₃O₁₁ and simulated C₃₄H₃₄Br₂SmN₁₃O₁₁

Catalytic properties study

General procedure for the synthesis of trans-4,5-dimopholino-cyclopent-2-enone (5) in MeCN: catalytic efficiency of the series of Ln(III)-complexes and Y(III)-complex. To a solution of Ln(III)-LH₆ (20 mg, 1.0 mol% loading) and 200 mg 4Å molecularsive in MeCN (10 mL) were added morpholine (195 μ l, 2.2 mmol) and furfural (85 μ l, 1.0 mmol). The mixture was allowed to stir vigorously at room temperature for 2h. Then the reaction mixture was sampled 500 μ l, filtered through celeit and washed with 5 mL of CH₂Cl₂. The solvent was evaporated under reduced pressure, and the crude product was analysed by ¹H NMR.

Figure S37. Time dependency experiment 1.0 mol% catalytic loading following by ¹H-NMR

General procedure for the synthesis of trans-4,5-dimopholino-cyclopent-2-enone (5) in MeCN time dependency experiments. To a solution of DyLH₆ (0.5 mol% and 1.0 mol% loading) and 200 mg 4Å molecularsive in MeCN (10 mL) were added morpholine (195 μ l, 2.2 mmol) and furfural (85 μ l, 1.0 mmol). The mixture was allowed to stir vigorously at room temperature. Then the reaction mixture was sampled 500 μ l, filtered through celeit and washed with 5 mL of CH₂Cl₂. The solvent was evaporated under reduced pressure, and the crude product was analysed by ¹H NMR.

Figure S38. Time dependency experiment 0.5 mol% catalytic loading following by ¹H-NMR

Figure S39. Time dependency experiment 1.0 mol% catalytic loading following by ¹H-NMR

General procedure for the investigation of the efficiency of catalyst for the transformation of furfural to trans-4,5-amino-cyclopent-2-enone in MeCN. To a solution of {Ln(III)-L4} (1 mol%) and 200 mg 4Å molecularsieve in MeCN (10 mL) were added morpholine (195 μ l, 2.2 mmol) and furfural (85 μ l, 1.0 mmol). The mixture was allowed to stir vigorously at room temperature for 4 h. Then the resulting solution was filtered through celite, washed with CH₂Cl₂. The solvent was evaporated under reduced pressure, and the crude product was purifying by column chromatography to obtain colourless oil product (98% yield). ¹H NMR (500 MHz, CDCl₃) = δ 7.60 (dd, *J* = 6.2, 2.2 Hz, 1H), 8.32 (dd, *J* = 6.2, 1.8 Hz, 1H), 3.80 (q, *J* = 2.3 Hz, 1H), 3.72 (td, *J* = 4.7, 4.2, 2.1 Hz, 4H), 3.67 (t, *J* = 4.7 Hz, 4H), 3.28 (d, *J* = 3.1 Hz, 1H), 2.81 (dt, *J* = 11.5, 4.7 Hz, 2H), 2.69 – 2.54 (m, 6H).

General procedure for the synthesis of trans-4,5-amino-cyclopent-2-enone in MeCN. To a solution of **DyLH**₆ (112 mg, 1mol%) and 200 mg 4Å molecularsieve in MeCN (10 mL) were added amine (2.2 mmol) and furfural (1.0 mmol). The mixture was allowed to stir vigorously at room temperature for 4 h. Then the resulting solution was filtered through celite, washed with CH₂Cl₂. The solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography.

Compound 6: ¹H NMR (500 MHz, CDCl₃) δ 7.57 (dd, *J* = 6.2, 2.2 Hz, 1H), 6.15 (dd, *J* = 6.2, 1.9 Hz, 1H), 3.78 (q, *J* = 2.3 Hz, 1H), 3.26 (d, *J* = 2.8 Hz, 1H), 2.72 (dt, *J* = 10.9, 5.3 Hz, 2H), 2.61 – 2.45 (m, 9H), 1.62 – 1.55 (m, 4H), 1.56 – 1.49 (m, 4H), 1.49 – 1.38 (m, 4H).

Compound 7: ¹H NMR (500 MHz, CDCl₃) δ 7.60 (dd, *J* = 6.1, 2.2 Hz, 1H), 6.20 (dd, *J* = 6.1, 1.6 Hz, 1H), 3.76 (q, *J* = 2.2 Hz, 1H), 3.32 (d, *J* = 2.7 Hz, 1H), 2.99 – 2.85 (m, 2H), 2.76 – 2.61 (m, 6H), 1.81 – 1.70 (m, 8H).

Compound 8: ¹H NMR (500 MHz, CDCl₃) δ 7.41 (dd, *J* = 6.1, 2.0 Hz, 1H), 6.12 (dd, *J* = 6.2, 1.9 Hz, 1H), 3.79 (q, *J* = 2.3 Hz, 1H), 3.23 (d, *J* = 3.1 Hz, 1H), 2.81-2.73 (m, 2H), 2.70-2.61 (m, 6H), 1.63 – 1.43 (m, 19H).

Compound 9a: ¹H NMR (500 MHz, CDCl₃) δ 7.63 (dd, *J* = 6.0, 2.0 Hz, 1H), 7.24 – 7.19 (m, 2H), 7.18 – 7.12 (m, 2H), 6.85 – 6.76 (m, 4H), 6.77 – 6.71 (m, 2H), 6.41 (dd, *J* = 6.0, 1.6 Hz, 1H), 4.61 (s, 1H), 3.87 (d, *J* = 2.9 Hz, 1H).

Compound 9b: ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.30 (m, 2H), 7.26 – 7.20 (m, 2H), 7.09 – 7.05 (m, 2H), 7.02 – 6.97 (m, 1H), 6.82 – 6.77 (m, 1H), 6.72 – 6.67 (m, 2H), 6.65 (d, *J* = 3.1 Hz, 1H), 6.37 (s, 1H), 4.78 (ddd, *J* = 5.9, 3.1, 1.8 Hz, 1H), 4.01 (s, 1H), 3.00 (dd, *J* = 19.1, 5.8 Hz, 1H), 2.33 (dd, *J* = 19.1, 1.7 Hz, 1H).

Compound 10: ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.39 (m, 2H), 7.33 – 7.29 (m, 2H), 6.97 – 6.91 (m, 2H), 6.60 – 6.53 (m, 3H), 6.36 (s, 1H), 4.72 (ddd, *J* = 5.9, 3.2, 1.7 Hz, 1H), 2.98 (dd, *J* = 19.1, 5.9 Hz, 1H), 2.31 (dd, *J* = 19.1, 1.7 Hz, 1H).

Compound 11: ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 7.49 (s, 1H), 6.72 (s, 1H), 6.46 (s, 1H), 3.70 (t, *J* = 7.1 Hz, 2H), 2.65 (*J* = 7.1 Hz, 2H), 2.29 (s, 6H).

Compound 12: ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 7.51 (s, 1H), 6.74 (s, 1H), 6.47 (s, 1H), 3.76-3.71 (m, 4H), 3.37 (s, 3H).

Compound 13: ¹H NMR (500 MHz, CDCl₃) δ 8.17 (t, *J* = 1.5 Hz, 1H), 7.37-7.31 (m, 4H), 7.27 (ddd, *J* = 6.3, 4.8, 2.6 Hz, 1H), 6.78 (d, *J* = 3.4 Hz, 1H), 6.48 (dd, *J* = 3.4, 1.8 Hz, 1H), 4.79 (d, *J* = 1.4 Hz, 2H).

Compound 14: ¹H NMR (500 MHz, DMSO-d₆) δ 7.52 (d, J = 1.6 Hz, 1H), 7.44 (t, J = 6.8 Hz, 4H), 7.29 (t, J = 7.6 Hz, 2H), 7.20 (dt, J = 18.0, 7.4 Hz, 3H), 6.26 – 6.21 (m, 1H), 6.08 (d, J = 3.2 Hz, 1H), 5.71 (s, 1H), 4.42 (t, J = 6.6 Hz, 1H), 3.08 – 2.93 (m, 1H), 2.83 (dt, J = 10.7, 7.4 Hz, 1H), 1.94 – 1.82 (m, 1H), 1.70 – 1.58 (m, 1H), 1.58 – 1.45 (m, 2H).

Table S1. Crystal data and structure refinement for \mbox{SmLH}_6 and \mbox{YbLH}_6

Compound	SmLH ₆ (CCDC = 1956883)	YbLH ₆ (CCDC = 1939447)
Empirical formula	$C_{40}H_{43}Br_2N_{16}O_{11}Sm$	$C_{38}H_{47}Br_2N_{14}O_{14}Yb$
Formula weight	1234.07	1256.75
Temperature/K	150.15	150.15
Crystal system	hexagonal	triclinic
Space group	P6 ₁ 22	P-1
a [Å]	13.00110(10)	10.3185(3)
b [Å]	13.00110(10)	16.0985(5)
c [Å]	46.6991(4)	16.1412(5)
α [°]	90	118.099(2)
β[°]	90	96.000(2)
γ[°]	120	92.008(2)
Volume [ų]	6831.56(12)	2341.39(13)
Z	6	2
$\rho_{calc}g \ [cm^3]$	1.800	1.783
μ [mm ⁻¹]	8.544	6.383
F(000)	3690.0	1250.0
Crystal size [mm ³]	0.2 × 0.17 × 0.15	$0.28 \times 0.18 \times 0.04$
Radiation	GaKα (λ = 1.34143)	CuKα (λ = 1.54186)
20 range for data collection [°]	6.83 to 138.826	10.98 to 145.732
Index ranges	-17 ≤ h ≤ 13, -16 ≤ k ≤ 17, -46 ≤ l ≤ 63	$-7 \le h \le 12, -17 \le k \le 19, -19 \le l \le 19$
Reflections collected	90987	20575
Independent reflections	5066 [R _{int} = 0.0328, R _{sigma} = 0.0097]	8960 [R _{int} = 0.0486, R _{sigma} = 0.0438]
Data/restraints/parameters	6066/0/320	8960/4/632
Goodness-of-fit on F ²	1.068	1.066
Final R indexes [I>=2σ (I)]	R ₁ = 0.0235, wR ₂ = 0.0649	$R_1 = 0.0601$, $wR_2 = 0.1546$
Final R indexes [all data]	$R_1 = 0.0242$, $wR_2 = 0.0655$	$R_1 = 0.0639$, $wR_2 = 0.1604$
Largest diff. peak/hole [e Å ⁻³]	0.49/-0.51	2.68/-2.94
Flack parameter	0.023(3)	-

Table S2. Crystal data and structure refinement for \mathbf{ErLH}_6 and \mathbf{YLH}_6

Compound	ErLH ₆ (CCDC = 1956884)	YLH ₆ (CCDC = 1956885)
Empirical formula	$C_{34}H_{36}Br_2ErN_{13}O_{12}$	$C_{40}H_{43}Br_2N_{16}O_{11}Y$
Formula weight	1145.84	1172.63
Temperature/K	180	150.15
Crystal system	monoclinic	hexagonal
Space group	P2 ₁ /c	P6 ₁ 22
a [Å]	12.4509(3)	12.93430(10)
b [Å]	18.1610(4)	12.93430(10)
c [Å]	21.2663(6)	46.4828(6)
α [°]	90	90
β[°]	93.752(2)	90
γ [°]	90	120
Volume [ų]	4798.4(2)	6734.55(14)
Z	4	6
ρ _{calc} g [cm ³]	1.586	1.735
μ [mm ⁻¹]	7.403	3.114
F(000)	2260.0	3522.0
Crystal size [mm ³]	0.2 × 0.04 × 0.03	0.25 × 0.24 × 0.23
Radiation	GaKα (λ = 1.34143)	GaKα (λ = 1.34143)
20 range for data collection [°]	5.572 to 124.992	6.866 to 124.968
Index ranges	-13 ≤ h ≤ 16, -8 ≤ k ≤ 23, -27 ≤ 1 ≤ 27	-17 ≤ h ≤ 8, -16 ≤ k ≤ 17, -59 ≤ l ≤ 61
Reflections collected	29620	69788
Independent reflections	11293 [R _{int} = 0.0258, R _{sigma} = 0.0321]	5433 [R _{int} = 0.0175, R _{sigma} = 0.0064]
Data/restraints/parameters	11293/5/555	5433/2/302
Goodness-of-fit on F ²	1.065	1.063
Final R indexes [I>=2σ (I)]	$R_1 = 0.0534$, $wR_2 = 0.1596$	$R_1 = 0.0266$, $wR_2 = 0.0758$
Final R indexes [all data]	$R_1 = 0.0636$, $wR_2 = 0.1651$	R ₁ = 0.0268, wR ₂ = 0.0760
Largest diff. peak/hole [e Å ⁻³]	1.81/-1.06	0.77/-0.63
Flack parameter	-	-0.013(3)

SHAPE analysis

Sm(III)LH₆

Ideal structures ML10

JSPC-10	10 C2v	Sphenocorona J87
SDD-10	11 D2	Staggered Dodecahedron (2:6:2)
TD-10	12 C2v	Tetradecahedron (2:6:2)
HD-10	13 D4h	Hexadecahedron (2:6:2) or (1:4:4:1)

Structure 1 [Sm]					
Sm	7.4135	4.2802	3.8891		
0	9.6182	4.3641	3.1292		
0	8.5885	6.1476	4.6490		
0	6.7060	4.6546	6.3412		
0	7.3840	3.4802	1.4369		
0	7.4633	5.6308	1.6866		
0	8.6080	3.6480	6.0916		
Ν	8.6353	1.8263	3.6234		
Ν	5.8993	6.5653	4.1548		
Ν	5.0587	4.2920	2.9414		
Ν	6.2464	2.2350	4.8368		

J	ISPC-1	0	Ideal struct	ure CS	hM =	2.00118
	Sm	Μ	7.4201	4.2840	3.88	891
	0	L3	9.5589	4.2363	3.027	'1
	0	L8	8.4482	6.1601	4.751	.0
	0	L9	6.5614	4.9802	6.469	8
	0	L2	7.5937	3.1922	1.308	34
	0	L7	7.4560	5.8761	2.135	54
	0	L4	8.8169	3.5190	5.642	27

- N L1 8.4556 1.6993 3.5298
- N L10 5.6994 6.4732 4.2484
- N L6 5.3746 4.0983 2.7784
- N L5 6.2365 2.6054 4.9998
- SDD-10 Ideal structure CShM = 5.20977
- Sm Μ 7.4201 4.2840 3.8891 0 L9 9.9058 4.2981 3.6883 0 L10 8.6751 6.4296 4.0898 6.9787 5.0486 6.2214 0 L6 0 7.8615 3.5194 1.5568 L1 0 L3 6.6309 5.6509 1.9583
- O L4 8.2093 2.9171 5.8199
- N L2 8.6507 2.1525 3.4876
- N L5 6.1895 6.4155 4.2906
- N L7 5.1552 3.8876 2.9237
- N L8 5.9444 2.5207 4.8545
- Ideal structure CShM = 4.05758 TD-10 Sm Μ 7.4201 4.2840 3.8891 0 L9 9.8012 4.5053 3.1302 8.8023 6.2355 4.6480 0 L10 0 L5 6.9345 5.1251 6.2024 7.9057 3.4429 1.5758 0 L2 0 6.6612 5.5985 1.8913 L4 8.1790 2.9696 5.8869 0 L3 8.6646 2.1285 3.5736 Ν L1 Ν L6 6.1756 6.4395 4.2046 Ν L8 5.1590 3.8548 2.8902 Ν L7 5.9179 2.5404 4.8880

F	ID-10	Ide	al structi	ure CSł	η Μ =	8.27439
	Sm	М	7.4201	4.2840	3.88	891
	0	L1	9.8713	4.2873	3.791	.6
	0	L2	8.6486	6.4052	3.986	66
	0	L8	6.8932	5.1966	6.104	4
	0	L9	7.9470	3.3714	1.673	8
	0	L10	6.7243	5.4892	1.86	89
	0	L7	8.1159	3.0788	5.909	3
	Ν	L3	8.6428	2.1662	3.694	0
	Ν	L4	6.1974	6.4018	4.084	1
	Ν	L6	4.9689	4.2807	3.986	6
	Ν	L5	6.1916	2.1629	3.791	.6

Yb(III)LH₆

Ideal struc	Ideal structures ML8					
OP-8	1 D8h Octagon					
HPY-8	2 C7v Heptagonal pyramid					
HBPY-8	3 D6h Hexagonal bipyramid					
CU-8	4 Oh Cube					
SAPR-8	5 D4d Square antiprism					
TDD-8	6 D2d Triangular dodecahedron					
JGBF-8	7 D2d Johnson gyrobifastigium J26					
JETBPY-8	8 D3h Johnson elongated triangular bipyramid J14					
JBTPR-8	9 C2v Biaugmented trigonal prism J50					

Structure 1 [Yb]

- O 8.3225 8.3636 6.8094
- O 5.7011 7.7792 7.0350
- O 6.1529 10.3982 8.0181
- O 4.9800 9.1604 9.3481
- N 7.3920 9.1458 10.8135
- N 8.8911 10.1756 8.8361
- N 6.2664 6.1125 9.1689
- N 8.8080 6.8426 9.5483
- N 5.0351 10.2110 8.6259

OP-8	Idea	al structu	ire CShl	∨ =	33.58977
0	М	6.8388	8.6876	8.68	893
0	L1	5.4983	7.2349	8.12	240
0	L4	6.8661	10.7426	8.6	309
0	L2	4.9703	8.6881	7.83	316
Ν	L6	8.7073	8.6872	9.54	69
Ν	L5	8.1793	10.1404	9.2	545
Ν	L8	6.8115	6.6327	8.74	76
Ν	L7	8.1408	7.2343	9.33	370
Ν	L3	5.5368	10.1410	8.0	416

HPY-8		Ideal struct	ure CSh	M =	28.00755
0	М	7.0007	8.6622	8.51	46
0	L2	5.5432	7.6213	7.31	50
0	L4	6.7092	10.7206	7.94	147
0	L1	5.5435	8.8911	10.08	865
Ν	L6	8.5880	8.7871	9.96	78
Ν	L5	8.0398	10.4130	9.22	229
Ν	L8	6.5859	6.5483	8.43	78
Ν	L7	7.9409	7.0671	9.61	84

N L3 5.5981 9.4782 7.0956

HBPY-8		Ideal structure CShM = 22.78965
0	Μ	6.8388 8.6876 8.6893
0	L1	6.4371 8.0036 6.6192
0	L2	7.1552 10.7519 7.9457
0	L4	4.8126 8.0281 9.3005
Ν	L8	7.2405 9.3717 10.7593
Ν	L7	8.8651 9.3472 8.0780
Ν	L5	6.5224 6.6234 9.4329
Ν	L6	8.5487 7.2830 8.8216
Ν	L3	5.1289 10.0923 8.5569

CU-8	Id	eal structur	e CShl	M =	28.82803
0	Μ	6.8388	8.6876	8.68	393
0	L1	6.4629	8.0413	6.69	66
0	L3	7.2520 1	LO.7755	8.6	918
0	L6	5.1280	8.3015	9.89	50
Ν	L7	7.2147	9.3340	10.6	820
Ν	L4	8.5497	9.0738	7.48	35
Ν	L5	6.4256	6.5998	8.68	67
Ν	L8	8.5124	7.6322	9.47	36
Ν	L2	5.1652	9.7430	7.90	49

SAPR-8		Ideal structure CShM = 26.71759
0	М	6.8388 8.6876 8.6893
0	L1	6.5394 7.4284 6.9604
0	L2	6.4621 10.0507 7.0570
0	L6	4.7002 8.6355 8.3929

- N L8 7.6018 8.6357 10.7090
- N L3 8.5139 10.0509 8.6947
- N L5 6.2057 6.7814 9.4827
- N L4 8.5912 7.4286 8.5981
- N L7 6.0963 10.4899 9.6193
- TDD-8 Ideal structure CShM = 27.15569 0 Μ 6.8388 8.6876 8.6893 0 L1 6.2528 7.4335 7.0399 0 L5 6.8828 9.9358 6.9352 0 L2 4.6991 8.4832 8.8156 L7 7.2153 8.8454 10.8034 Ν Ν L8 8.5540 9.9716 8.9037 L3 Ν 6.4658 6.7352 9.5172 L4 8.5581 7.4861 8.2028 Ν Ν L6 6.0825 10.6102 9.2962
- JGBF-8 Ideal structure CShM = 23.76598
 - O M 6.8388 8.6876 8.6893
 - O L3 6.4237 8.1039 7.0395
 - O L1 6.6111 10.6402 7.0752
 - O L6 5.2244 8.1609 9.2818
 - N L5 7.2539 9.2714 10.3390
 - N L4 8.4532 9.2144 8.0967
 - N L7 6.6514 6.1513 8.6535
 - N L8 8.6808 7.2618 9.7107
 - N L2 5.4119 10.6973 9.3176

JETBPY-8 Ideal structure CShM = 27.67001

- 0 Μ 6.8388 8.6876 8.6893
- 0 L1 5.5454 8.1904 7.6105
- 0 L3 6.7428 10.1501 7.7218
- 0 L5 5.5020 9.4567 9.5292
- Ν L6 7.3195 8.3006 10.3333
- 8.5603 8.9939 8.5260 Ν L4
- Ν L2 7.3629 7.0342 8.4147
- L8 9.2315 7.1656 9.7480 Ν
- Ν L7 4.4461 10.2097 7.6305

JBTPR-8 Ideal structure (CShM =	22.49907
---------------------------	--------	----------

0	Μ	7.0246 8.6978 8.4541
0	L3	6.4960 7.3438 6.9805
0	L5	6.3974 10.0518 7.0196
0	L1	4.9927 8.6183 8.8407
Ν	L2	7.1177 8.6713 10.5217
Ν	L6	8.5225 10.1048 8.7006
Ν	L7	6.2736 6.3168 9.4786
Ν	L4	8.6211 7.3968 8.6615
Ν	L8	6.1036 10.9874 9.5460

Y(III)LH₆

- Ideal structures ML10
- DP-10 1 D10h Decagon EPY-10
- 2 C9v Enneagonal pyramid
- OBPY-10 3 D8h Octagonal bipyramid
- PPR-10 4 D5h Pentagonal prism
- PAPR-10 5 D5d Pentagonal antiprism
- JBCCU-10 6 D4h Bicapped cube J15
- 7 D4d Bicapped square antiprism J17 JBCSAPR-10
- JMBIC-10 8 C2v Metabidiminished icosahedron J62

Structu	re 1 [Y]
0	1.0104 10.4625 10.8672
0	-1.0104 10.4625 12.3742
0	-0.6868 8.1210 13.9895
0	0.6868 8.1210 9.2519
0	1.1408 9.2457 13.7417
0	-1.1408 9.2457 9.4997
Ν	-2.7143 8.3843 11.8782
Ν	2.7143 8.3843 11.3632
Ν	1.1486 6.5484 12.5569
Ν	-1.1486 6.5484 10.6845
Ν	-0.2787 8.7382 8.7188

DP-10 Ideal structure CShM = 31.44118

0	Μ	-0.0253	8.5693	11.3569
0	L1	-1.5108	8.9577	12.9343
0	L2	-0.2944	8.8179	13.5275
0	L6	1.4601	8.1808	9.7795
0	L3	1.0247	8.5830	13.2915
0	L8	-1.0754	8.5555	9.4222
Ν	L10	-2.1597	8.9492	11.7386
Ν	L5	2.1090	8.1893	10.9752
Ν	L4	1.9427	8.3429	12.3166
Ν	L9	-1.9934	8.7956	10.3971
Ν	L7	0.2437	8.3206	9.1863

EPY-10) (deal structu	ure CSł	אר M=	20.93587
0	М	0.0610	8.7671	11.36	525
0	L2	-1.7461	9.5171	12.70	84
0	L3	-0.5432	8.9655	13.65	05
0	L7	1.3440	8.2624	9.429	90
0	L4	0.9423	8.3211	13.52	21
0	L9	-1.4480	9.4735	9.67	04
Ν	L10	-2.1034	9.7177	11.1	365
Ν	L6	2.1741	7.8622	10.76	67
Ν	L5	2.0155	7.8854	12.38	31
Ν	L1	-0.8883	6.5912	11.30	06
Ν	L8	-0.0865	8.8987	8.99	50

OBPY-:	10	Ideal structure CShM = 22.57064
0	Μ	-0.0253 8.5693 11.3569
0	L2	-0.2391 10.8230 11.9463
0	L4	0.2783 8.0094 13.6079
0	L7	-0.0889 7.3715 9.3484
0	L3	0.0383 9.7670 13.3653
0	L9	-0.3912 10.5588 10.1820
Ν	L1	-2.3350 8.2871 11.5983
Ν	L10	2.2843 8.8514 11.1155
Ν	L5	0.3405 6.5797 12.5318
Ν	L6	0.1884 6.3155 10.7675

N L8 -0.3290 9.1291 9.1059

PPR-10		Ideal structure CShM = 20.08621
0	Μ	-0.0253 8.5693 11.3569
0	L1	-0.5743 10.8627 11.6517
0	L7	-0.5181 8.0920 13.6323

- O L4 1.4127 8.3060 9.4832
- O L2 1.0704 9.8103 13.0619
- O L10 -1.9512 8.2146 10.0103
- N L6 -2.1628 9.1444 12.2221
- N L3 2.2985 8.2302 11.7217
- N L8 0.7100 6.5119 12.2921
- N L9 -0.1757 6.5876 10.0536
- N L5 -0.3628 9.9329 9.4399

PAPR-:	10	Ideal struc	ture C	ShM =	19.21535
0	М	-0.0253	8.5693	3 11.35	69
0	L1	-1.0469	10.378	5 12.53	70
0	L6	-0.6135	8.1615	13.63	67
0	L9	0.9962	6.7600	10.176	58
0	L5	1.3105	9.6530	13.015	54
0	L2	-1.5090	9.9607	10.10	30
Ν	L7	-2.3560	8.3517	11.83	57
Ν	L4	2.3053	8.7868	10.877	71
Ν	L10	1.4583	7.1778	3 12.61	08
Ν	L8	-1.3612	7.4855	9.698	4
Ν	L3	0.5628	8.9770	9.077	1

- JBCCU-10 Ideal structure CShM = 18.95343
 - O M -0.0253 8.5693 11.3569
 - O L1 0.2860 10.5477 12.2559
 - O L3 -0.9616 8.6266 13.3417
 - O L8 0.9109 8.5119 9.3721
 - O L9 1.4428 9.1029 13.9880
 - O L2 -0.9303 10.1056 10.0762
 - N L4 -2.1779 8.1846 11.1620

- N L7 2.1272 8.9539 11.5518
- N L5 0.8796 7.0329 12.6375
- N L6 -0.3367 6.5908 10.4578
- N L10 -1.4935 8.0357 8.7257

JBCSAPR-10 Ideal structure CShM = 19.69155

- O M -0.0253 8.5693 11.3569
- O L1 -1.0515 10.4166 11.9587
- O L3 -0.8403 8.1487 13.3536
- O L6 0.8174 7.5637 9.5944
- O L2 1.3484 9.5586 12.7575
- O L7 -1.4269 9.0060 9.7221
- N L9 -2.9974 8.5909 11.8421
- N L10 2.9468 8.5476 10.8717
- N L4 1.2323 6.9576 12.1623
- N L5 -1.2157 6.7381 11.1169
- N L8 0.9336 10.1648 10.1897

JMBIC-10 Ideal structure CShM = 15.01810

- O M 0.1762 8.5960 11.2379
- O L10 -0.8803 10.4721 12.4344
- O L3 -0.9472 8.0550 13.3624
- O L7 1.2995 9.1368 9.1136
- O L8 1.2912 9.3563 13.2986
- O L4 -0.8752 10.3366 9.8479
- N L9 -2.2863 8.6610 11.2298
- N L5 2.6384 8.5309 11.2462
- N L6 1.2274 6.8555 12.6280
- N L2 -0.9835 6.4257 11.3495
- N L1 -0.9390 7.8358 9.1775

JATDI-	-10	Ideal struct	ture CS	5hM =	21.69634
0	М	0.0197	8.5597	11.56	83
0	L7	-0.5376	10.5736	12.19	959
0	L2	-0.8708	8.7526	13.55	08
0	L5	0.9102	8.3669	9.585	8
0	L3	1.2600	9.4797	13.109	97
0	L9	-0.7537	9.8859	10.01	81
Ν	L1	-1.2928	6.9393	12.21	01
Ν	L4	2.1547	8.1159	11.496	56
Ν	L8	0.7932	7.2336	13.118	85
Ν	L6	-1.2205	7.6398	10.02	68
Ν	L10	-0.7411	8.7148	8.04	53

Er(III)LH₆

Ideal	structures	ML8	

OP-8	1 D8h Octagon
HPY-8	2 C7v Heptagonal pyramid
HBPY-8	3 D6h Hexagonal bipyramid
CU-8	4 Oh Cube
SAPR-8	5 D4d Square antiprism
TDD-8	6 D2d Triangular dodecahedron
JGBF-8	7 D2d Johnson gyrobifastigium J26
JETBPY-8	8 D3h Johnson elongated triangular bipyramid J14
JBTPR-8	9 C2v Biaugmented trigonal prism J50

Structure 1 [Er]

Er 3.1015 6.0440 5.9832

0	3.7292	8.0262	5.3143
0	1.3616	7.4215	6.3876

- O 1.5308 4.6189 7.0347
- 0 1.6238 5.7407 4.1554
- N 3.8142 3.7611 5.4219
- N 4.4297 5.8424 3.8028
- N 2.8735 6.5561 8.5076
- N 5.1564 5.9505 7.2452

OP-8	Ide	eal structu	re CSh	M =	33.58538
Er	Μ	3.0690	5.9957	5.98	836
0	L1	4.1833	7.3443	6.86	517
0	L3	1.5323	6.5703	7.05	513
0	L4	1.1944	5.4484	6.11	177
0	L5	1.9546	4.6471	5.10)55
Ν	L6	3.3676	4.6358	4.60)78
Ν	L7	4.6057	5.4211	4.91	159
Ν	L2	2.7703	7.3556	7.35	595
Ν	L8	4.9435	6.5430	5.84	196

HPY-8		Ideal struct	ure CSh	M =	22.84472
Er	М	2.9888	5.7751	6.00	85
0	L1	3.7105	7.7608	5.78	48
0	L2	1.0002	6.4654	5.72	03
0	L3	1.5952	6.4457	7.46	52
0	L8	1.9027	5.9653	4.19	24
Ν	L6	4.8657	5.0198	5.36	00
Ν	L7	3.6230	5.3219	4.03	20
Ν	L4	3.2395	5.9210	8.11	32
Ν	L5	4.6950	5.2864	7.17	63

HBPY-	8	Ideal struct	ture CS	hM =	11.74275
Er	Μ	3.0690	5.9957	5.983	36
0	L2	3.7275	7.8351	4.854	7
0	L3	2.4044	8.0396	6.671	.1
0	L5	2.4105	4.1563	7.112	.6
0	L1	1.2411	5.8435	4.669	4
Ν	L6	3.7335	3.9518	5.296	2
Ν	L7	4.3920	5.7913	4.167	2
Ν	L4	1.7459	6.2002	7.800	1
Ν	L8	4.8969	6.1480	7.297	9

CU-8	Idea	al structu	re CSh	M =	7.05514
Er	Μ	3.0690	5.9957	5.98	36
0	L1	4.3215	7.8310	5.33	19
0	L2	1.7927	7.9161	6.19	62
0	L7	1.8164	4.1604	6.63	54
0	L3	1.1905	5.8267	4.64	01
Ν	L8	4.3453	4.0753	5.77	11
Ν	L4	3.7194	5.7416	3.77	58
Ν	L6	2.4185	6.2498	8.19	15
Ν	L5	4.9474	6.1647	7.32	71

SAPR	-8	Ideal struct	ure CS	hM =	2.91230
Er	Μ	3.0690	5.9957	5.983	86
0	L1	3.9314	8.1991	5.937	7
0	L2	1.1727	7.4048	6.123	2
0	L7	1.3961	4.6801	7.018	9
0	L3	1.6508	5.3001	4.221	3

- N L8 3.6849 3.7535 5.5429
- N L4 4.4095 6.0944 4.0358
- N L6 3.0088 6.7301 8.2327
- N L5 5.2976 5.8035 6.7566

TDD-8 Ideal structure CShM = 2.25784 Er М 3.0690 5.9957 5.9836 0 L2 3.8334 8.1843 5.4695 0 L6 1.2500 7.4577 6.4227 0 L8 1.2831 4.6279 6.7444 0 L5 1.5750 5.7700 4.1518 L4 3.8851 3.7658 5.9717 Ν Ν L1 4.4207 5.7908 4.0420 Ν L7 2.9824 6.2627 8.3416 Ν L3 5.3221 6.1064 6.7254

JGBF-8 Ideal structure CShM = 12.14615

- Er M 3.0690 5.9957 5.9836 O L3 3.5099 7.4964 5.0181
- O L1 1.3910 7.9226 6.4626
- O L5 2.6280 4.4950 6.9492
- O L4 1.5445 5.7954 4.9762
- N L8 3.2225 3.8685 4.4973
- N L7 5.1878 5.5695 4.5391
- N L2 2.4745 6.6222 8.4356
- N L6 4.5934 6.1960 6.9911

JETBPY-8 Ideal structure CShM = 23.44598

Er M 3.0690 5.9957 5.9836

0	L1	4.4778	6.5199	5.1476	
0	L4	1.6700	6.7581	6.6319	
0	L6	2.7330	4.8673	7.2375	
0	L3	2.3223	6.4418	4.4997	
Ν	L5	3.3853	4.5510	5.1053	
Ν	L7	3.9277	5.5794	3.1766	
Ν	L8	2.2102	6.4120	8.7907	
Ν	L2	3.8255	6.8361	7.2798	

JBTPR	-8	Ideal struct	ure CS	hM =	2.94878
Er	М	3.1434	5.7960	6.221	6
0	L1	3.5648	7.8661	5.588	9
0	L7	0.8306	7.4904	6.437	0
0	L4	1.3810	4.7084	6.979	2
0	L2	1.9450	5.8098	4.370	5
Ν	L6	3.6745	3.7855	5.487	6
Ν	L8	4.7862	5.8987	3.864	3
Ν	L3	3.0009	6.7646	8.197	6
Ν	L5	5.2943	5.8418	6.706	0