Homo- and Heteroleptic trimethoxy terpyridine-Cu(II) complexes: Synthesis, Characterization, DNA/BSA Binding, DNA Cleavage and Cytotoxicity Studies

Surbhi Jain^a, Kishalay Bhar^a, Sandeep Kumar^b, Shreetama Bandyopadhyaya^c, Suman Tapryal^b, Chandi C. Mandal^c, Anuj K. Sharma^a*

^aDepartment of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, District Ajmer, Rajasthan, 305817, India.

^bDepartment of Biotechnology, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, District Ajmer, Rajasthan, 305817, India.

^cDepartment of Biochemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, District Ajmer, Rajasthan, 305817, India.

1	Figure S1	Data and graph for alamantal analysis of C I
1.	Figure S1.	Data and graph for elemental analysis of C-I.
$\frac{2}{2}$	Figure S2.	Data and graph for elemental analysis of C-II.
<u> </u>	Figure S5.	Data and graph for elemental analysis of C-III .
4.	Figure S4.	Data and graph for elemental analysis of C-IV.
<u> </u>	Figure S5.	FIR spectrum of C-I.
<u> </u>	Figure S6.	FIR spectrum of C-II.
/.	Figure S7.	FIIR spectrum of C-III.
8.	Figure S8.	FTIR spectrum of C-IV.
9	Figure S9.	¹ H NMR spectrum of L in CDCl ₃ .
10.	Figure S10.	¹³ C NMR spectrum of ligand L in CDCl ₃ .
11.	Figure S11.	ESI-Mass spectrum of C-I recorded in MeCN.
12.	Figure S12.	ESI-Mass spectrum of C-II recorded in MeCN.
13.	Figure S13.	ESI-Mass spectrum of C-III recorded in MeCN.
14.	Figure S14.	UV-vis absorption spectra of L in MeCN.
15.	Figure S15.	UV- Visible absorption spectra of C-I recorded in MeCN and MeCN:PBS
		buffer (1:1) upto 48 h at 298 K.
16.	Figure S16.	UV- Visible absorption spectra of C-II recorded in MeCN and
		MeCN:PBS buffer (1:1) upto 48 h at 298 K.
17.	Figure S17.	UV- Visible absorption spectra of C-III recorded in MeCN and
		MeCN:PBS buffer (1:1) upto 48 h at 298 K.
18.	Figure S18.	UV- Visible absorption spectra of C-IV recorded in MeCN and
		MeCN:PBS buffer (1:1) upto 48 h at 298 K.
19.	Figure S19.	Crystal packing of C-I showing π - π interaction and H-bonding.
20.	Figure S20.	Crystal packing of C-II showing H-bonding.
21.	Figure S21.	Crystal packing of C-IV showing π - π interaction and H-bonding.
22.	Figure S22.	X-band EPR spectrum of complex C-II in MeCN glass at 77 K
	_	(frequency 9.1 GHz and 100 kHz field).
23.	Figure S23.	X-band EPR spectrum of complex C-III in MeCN glass at 77 K
	_	(frequency 9.1 GHz and 100 kHz field).
24.	Figure S24.	X-band EPR spectrum of complex C-IV in MeCN glass at 77 K
		(frequency 9.1 GHz and 100 kHz field).
22.	Figure S25.	Cyclic voltammogram of C-I (1 mM) solution in dry CH ₃ CN and 0.1 M
		TBAP as supporting electrolyte vs. Ag wire at varying scan rates.

23.	Figure S26.	Cyclic voltammogram of C-II (1 mM) solution in dry CH_3CN and 0.1 M
24	Figure S27	Cyclic voltammogram of C-III (1 mM) solution in dry CH ₂ CN and 0.1 M
27.	Figure 527.	TBAP as supporting electrolyte vs. Ag wire at varying scan rates
25	Figure S28.	Cyclic voltammogram of C-IV (1 mM) solution in dry CH ₂ CN and 0.1 M
-0.		TBAP as supporting electrolyte vs. Ag wire at varying scan rates.
26.	Figure S29.	Plot of fluorescence emission intensity I versus wavelength λ for DNA-
	8	EtBr at different concentrations of C-II. The arrow shows the change in
		intensity of emission on increasing amount of the complex from 0 to 50
		μΜ.
27.	Figure S30.	Plot of fluorescence emission intensity I versus wavelength λ for DNA-
	_	EtBr at different concentrations of C-III. The arrow shows the change in
		intensity of emission on increasing amount of the complex from 0 to 50
		μM.
28.	Figure S31.	Plot of fluorescence emission intensity I versus wavelength λ for DNA-
		EtBr at different concentrations of C-IV. The arrow shows the change in
		intensity of emission on increasing amount of the complex from 0 to 50
		μΜ.
29.	Figure S32.	Plot of fluorescence emission intensity I versus wavelength λ for BSA at
		different concentrations of C-II. The arrow shows the change in intensity
		of emission on increasing amount of the complex from 0 to around 50 μ M.
30.	Figure S33.	Plot of fluorescence emission intensity I versus wavelength λ for BSA at
		different concentrations of C-III. The arrow shows the change in intensity
1	F ! GA (of emission on increasing amount of the complex from 0 to around $50 \mu\text{M}$.
31.	Figure S34.	Plot of fluorescence emission intensity I versus wavelength λ for BSA at
		different concentrations of C-IV. The arrow shows the change in intensity
22	Figure S25	of emission on increasing amount of the complex from 0 to around 50 μ W.
32.	Figure 555.	Agarose get electrophoresis for complexes C-I to C-IV showing DNA
22	Figuro \$36	aggregation in presence of H_2O_2 .
55.	rigure 550.	presence of 3-MPA
34.	Figure S37.	
35.	Table S1.	Consolidated characterization data for copper(II) complexes (C-I - C-IV)
36.	Table S2.	Summary of crystal data for complexes C-I, C-II and C-IV
37.	Table S3.	Selected bond lengths (Å) and bond angles (°) for complexes C-I, C-II
		and C-IV
38.	Table S4.	Summary of IC ₅₀ values for similar $Cu(II)$ complexes in cancer cell line.

Figure S2. Data and graph for elemental analysis of C-II.

Figure S4. Data and graph for elemental analysis of C-IV

3235414 821719

4471604

4.8

(min)

7.2

÷

12.0

9.6

Element %

9.893

45.023

58.514

8.7

-1.24

Carbon Hydrogen

0.0

2.4

1.183 3.308

 Component Name
 Retention Time
 Area

 (min)
 (.1*sV*sec)

 Nitrogen
 0.775
 414471

Figure S6. IR spectrum of C-II.

Figure S8. IR spectrum of C-IV.

Figure S10. ¹³C NMR spectrum of ligand L in CDCl₃.

Figure S12. ESI-Mass spectrum of C-II recorded in MeCN.

Figure S13. ESI-Mass spectrum of C-III recorded in MeCN.

Figure S14. UV-Vis spectrum of L (20 µM) in MeCN

Figure S15. UV- Visible absorption spectra of C-I recorded in (a) MeCN and; (b) MeCN:PBS buffer (1:1) upto 48 h at 298 K.

Figure S16. UV- Visible absorption spectra of **C-II** recorded in (a) MeCN and; (b) MeCN:PBS buffer (1:1) upto 48 h at 298 K.

Figure S17. UV- Visible absorption spectra of C-III recorded in (a) MeCN and; (b) MeCN:PBS buffer (1:1) upto 48 h at 298 K

Figure S18. UV- Visible absorption spectra of C-IV recorded in (a) MeCN and; (b) MeCN:PBS buffer (1:1) upto 48 h at 298 K

Figure S19. Crystal packing of C-I showing π - π interaction and H-bonding.

Cg(i)Cg(j)	Distance	Dihedral angle	Slippage	Symmetry	
Cg(8)Cg(9)	3.974(3)	14.00	1.857	1-x, 1-y, -z	
D-HA	D-H	АН	DA	<d-ah< th=""><th>Symmetry</th></d-ah<>	Symmetry
C1-H1AO4	0.9600	2.6000	3.531(10)	164.00	1-x,1-y,1-z
C4-H4O4	0.9300	2.5200	3.422(8)	163.00	1-x,1-y,1-z
C11-H11O4	0.9300	2.4800	3.408(7)	173.00	1-x,1-y,1-z
С19-Н19О7	0.9300	2.5800	3.384(8)	145.00	x,y,-1+z
С24-Н24О7	0.9300	2.4700	3.314(7)	150.00	x,y,-1+z
C26-H26O6	0.9300	2.3400	3.149(8)	146.00	1-x,-1/2+y,1/2-z
C34-H34O2	0.9300	2.5100	3.217(8)	133.0	1-x,1-y,-z
С36-Н36О9	0.9300	2.6000	3.393(9)	144.00	-x,1-y,-z
~ ~ ~ ~ ~ ~ ~ ~ ~	• • ~ • • ~ • •	~	~ . ~ ~ ~ ~	-	

π - π interactions and h	nydrogen bond	parameters (Å,	, °) for C-]
----------------------------------	---------------	----------------	----------------------

Cg(8): N5-C12-C24-C10-C11-C13; Cg(9): C2-C3-C4-C9-C8-C5

Figure S20. Crystal packing of C-II showing H-bonding.

Hydrogen bond parameters (Å, °) for C-II							
D-HA	D-H	АН	D A	<d-ah< td=""><td>Symmetry</td></d-ah<>	Symmetry		
C2-H2AO10	0.9600	2.3100	2.788(7)	110.00			
С3-Н3АО3	0.9600	2.5800	3.227(10)	125.00	x,y,1+z		
С3-Н3ВО11	0.9600	2.5500	3.492(7)	166.00	x,y,1+z		
С016-Н016О5	0.9300	2.5500	3.366(10)	147.00			
С017-Н017О1	0.9300	2.5500	3.468(11)	171.00	1-x,1-y,1-z		
C01B-H01BO3	0.9300	2.5800	3.486(9)	166.00	x,y,1+z		
C01E-H01EO8	0.9300	2.4100	3.181(7)	140.0	1-x,1-y,2-z		
C01N-H01NO3	0.9300	2.4400	3.219(12)	141.00	2-x,2-y,1-z		

Figure S21. Crystal packing of C-IV showing π - π interaction and H-bonding.

Cg(i)Cg(j)	Distance	Dihedral angle	Slippage	Symmetry	
Cg(4)Cg(4)	3.761(2)	0.00	1.844	2-x,1-y,1-z	
Cg(6)Cg(6)	3.7803(18)	0.00	1.839	1-x,1-y,-z	
Cg(7)Cg(7)	3.8130(19)	0.00	1.457	1-x,-y,1-z	
D-HA	D-H	АН	DA	<d-ah< th=""><th>Symmetry</th></d-ah<>	Symmetry
С7-Н7О11	0.9300	2.5900	3.427(6)	150.00	2-x,1-y,1-z
C14-H14O3	0.9300	2.5900	3.517(4)	172.00	-1+x,y,z
C21-H21O4	0.9300	2.3800	3.093(4)	133.00	2-x,1-y,-z
C24-H24AO7	0.9600	2.4400	3.223(6)	139.00	-x,-y,1-z
С25-Н25О4	0.9300	2.4500	3.285(5)	149.00	
C28-H28BO9	0.9600	2.5700	3.482(6)	160.00	
C28-H28CO2	0.9600	2.4700	3.425(5)	173.0	2-x,1-y,-z
$C_{\alpha}(A)$, N1 C1 C2 C2	C1 C5 Ca(6)	$\sim N2 C17 C19 C1$	$0.020.021 \cdot 0_{-}$	$7) \cdot C0 C10 C$	11 C12

 π - π interactions and hydrogen bond parameters (Å, °) for C-IV

Cg(4): N1-C1-C2-C3-C4-C5; Cg(6): N3-C17-C18-C19-C20-C21; Cg(7): C9-C10-C11-C12-C13-C14

Figure S22. X-band EPR spectrum of complex C-II in MeCN glass at 77 K (frequency 9.1 GHz and 100 kHz field).

Figure S23. X-band EPR spectrum of complex C-III in MeCN glass at 77 K (frequency 9.1 GHz and 100 kHz field).

Figure S24. X-band EPR spectrum of complex **C-IV** in MeCN glass at 77 K (frequency 9.1 GHz and 100 kHz field).

Figure S25. Cyclic voltammogram of C-I (1 mM) solution in dry CH₃CN and 0.1 M TBAP as supporting electrolyte *vs*. Ag wire at varying scan rates.

Figure S26. Cyclic voltammogram of **C-II** (1 mM) solution in dry CH₃CN and 0.1 M TBAP as supporting electrolyte *vs*. Ag wire at varying scan rates.

Figure S27. Cyclic voltammogram of **C-III** (1 mM) solution in dry CH₃CN and 0.1 M TBAP as supporting electrolyte *vs*. Ag wire at varying scan rates.

Figure S28. Cyclic voltammogram of C-IV (1 mM) solution in dry CH₃CN and 0.1 M TBAP as supporting electrolyte *vs*. Ag wire at varying scan rates.

Figure S29. Plot of fluorescence emission intensity *I* versus wavelength λ for DNA-EtBr at different concentrations of **C-II**. The arrow shows the change in intensity of emission on increasing amount of the complex from 0 to 50 μ M.

Figure S30. Plot of fluorescence emission intensity *I* versus wavelength λ for DNA-EtBr at different concentrations of **C-III**. The arrow shows the change in intensity of emission on increasing amount of the complex from 0 to 50 μ M.

Figure S31. Plot of fluorescence emission intensity *I* versus wavelength λ for DNA-EtBr at different concentrations of **C-IV**. The arrow shows the change in intensity of emission on increasing amount of the complex from 0 to 50 μ M.

Figure S32. Plot of fluorescence emission intensity *I* versus wavelength λ for BSA at different concentrations of **C-II**. The arrow shows the change in intensity of emission on increasing amount of the complex from 0 to around 50 μ M.

Figure S33. Plot of fluorescence emission intensity *I* versus wavelength λ for BSA at different concentrations of **C-III**. The arrow shows the change in intensity of emission on increasing amount of the complex from 0 to around 50 μ M.

Figure S34. Plot of fluorescence emission intensity *I* versus wavelength λ for BSA at different concentrations of **C-IV**. The arrow shows the change in intensity of emission on increasing amount of the complex from 0 to around 50 μ M.

Figure S35. Agarose gel electrophoresis for complexes **C-I** to **C-IV** showing DNA aggregation in presence of H_2O_2 . Lane A: DNA only; Lane B: Buffer control; Lane C: H_2O_2 (500 µM) control; Lane D: **C-I** (500 µM) control; Lane E: **C-II** (500 µM) control; Lane F: **C-III** (500 µM) control; Lane G: **C-IV** (500 µM) control; Lane H: **C-I** (100 µM) + H_2O_2 (500 µM); Lane I: **C-II** (100 µM) + H_2O_2 (500 µM); Lane J: **C-III** (100 µM) + H_2O_2 (500 µM); Lane K: **C-IV** (100 µM) + H_2O_2 (500 µM); Lane L: **C-I** (500 µM) + H_2O_2 (500 µM); Lane M: **C-II** (500 µM) + H_2O_2 (500 µM); Lane N: **C-III** (500 µM) + H_2O_2 (500 µM); Lane O: **C-IV** (500 µM) + H_2O_2 (500 µM)

Figure S36. (Top): Agarose gel electrophoresis for terpyridine ligand (L) and co-ligands (1,10-phenanthroline, 2,2'-bipyridine, 3-methylimidazole in absence and presence of 3-MPA; (Bottom): % Plasmid DNA form present in each lane.

Figure S37 (Left): Gel electrophoresis diagram showing chemical nuclease activity of **C-I** to **C-IV** in the presence of various controls. Lane A: Buffer control; Lane B: DNA + **C-I** (100 μ M) + MPA (500 μ M); Lane C: DNA + **C-I** (100 μ M) + MPA (500 μ M) + D₂O (2.5 mM); Lane D: DNA + **C-I** (100 μ M) + MPA (500 μ M) +

(**Right**): Lane A': Buffer control; Lane B': DNA + C-III (100 μ M) + MPA (500 μ M); Lane C': DNA + C-III (100 μ M) + MPA (500 μ M)+ D₂O (2.5 mM); Lane D': DNA + C-III (100 μ M) + MPA (500 μ M)+ DMSO (2.5 mM); Lane E': DNA + C-III (100 μ M) + MPA (500 μ M)+ NaN₃ (2.5 mM); Lane F': DNA + C-III (100 μ M) + MPA (500 μ M)+ KI (2.5 mM); Lane G': DNA + C-IV (100 μ M) + MPA (500 μ M); Lane H': DNA + C-IV (100 μ M) + MPA (500 μ M)+ D₂O (2.5 mM); Lane I': DNA + C-IV (100 μ M) + MPA (500 μ M)+ KI (2.5 mM).

Complex	FTIR, cm ⁻¹ (KBr disc)	λ _{max} , nm (ε, M ⁻¹ cm ⁻¹) (in MeCN)	ESI-MS <i>m/z</i> found (calculated): [(M ²⁺ – 2ClO ₄)/2] in MeCN	CHN found (calculated)	Conductance (S.cm ⁻¹ M ⁻¹)
C-I	3000 (w), 1600 (m), 1404 (m), 1085 (vs), 622 (m)	223 (7.5 x 10 ⁴); 270 (5.1 x 10 ⁴); 330 (1.9 x 10 ⁴); 690 (1.2 x 10 ²)	320.933 (321.080)	C=51.87 (51.35); H=3.68 (3.47); N=8.03 (8.32)	310
C-II	2945 (w),	222 (8.4 x	430.541	C=54.69 (54.32);	280

Table S1. Consolidated characterization data for copper(II) complexes (C-I - C-IV).

	1610 (m),	104); 265 (4.0	(430.625)	H=4.09 (3.99);	
	1480 (m),	x 10 ⁴); 287		N=7.22 (7.72)	
	1090 (vs), 620	$(3.8 \times 10^4);$			
	(m)	332 (3.9 x			
		104); 689 (8.7			
		x 10 ¹)			
	3520 (w),	222 (6.3 x			
	3070 (w),	10 ⁴); 288 (3.3		C=48.54 (48.84); H=3.42 (3.74); N=8 72 (8.38)	
сшцо	1605 (m),	x 10 ⁴); 340	309.0905		250
С-Ш.П ₂ О	1405 (m),	$(2.0 \times 10^4);$	(309.080)		330
	1090 (vs), 625	637 (1.1 x		N=0.72(0.30)	
	(m)	10 ²)			
	2025 (m)	222 (5.7 x			
	2935 (W), 1605 (m), 1405 (m)	104); 288 (2.0		C=45.02 (45.20); U=2.50 (2.66);	
CW		x 10 ⁴); 340			220
C-IV	1403 (III), 1100 (yg) 620	(1.9 x 10 ⁴);		H=3.39(3.00), N=0.80(0.41)	520
	1100 (VS), 020	640 (1.1 x		N=9.89(9.41)	
	(111)	10 ²)			

Table S2: Summary of crystal data for complexes C-I, C-II and C-IV

	I		
Compound	C-I	C-II	C-IV
Formula	$C_{76}H_{64}Cl_4Cu_2N_{12}O_{22}$	$C_{50}H_{45}Cl_2CuN_7O_{14}$	C ₂₈ H ₂₇ Cl ₂ CuN ₅ O ₁₁
Formula weight/ g.mol ⁻¹	1766.27	1102.36	743.98
T (K)	296(2)	296(2)	293(2)
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	$P2_1/c$	р1	р1
a/Å	19.078(5)	9.6483(4)	9.1079(4)
b/Å	12.031(3)	12.9618(6)	12.5746(4)
c/Å	17.935(4)	20.9170(9)	14.8504(7)
α/°	90	91.460(3)	70.650(4)
β/°	113.406(12)	100.086(3)	88.016(4)
$\gamma/^{\circ}$	90	107.065(3)	73.255(4)
$V/Å^3$	3778.0(16)	2453.82(19)	1533.18(12)
Z	2	2	2
ρ_{calcd} (mg/m ³)	1.553	1.436	1.612
Absorption coefficient (µ) (mm ⁻¹)	0.791	0.627	0.956
F (000)	1812	1094	762
R (int)	0.2052	0.0223	0.0198
Data/restraints/parameters	6633 / 0 / 527	8613 / 0 / 674	5385 / 0 / 424
Goodness-of-fit on F^2	1.117	1.169	1.057
Final R indices $[I>2\sigma(I)]$ (R ₁ ,wR ₂)	0.0825, 0.2189	0.0768, 0.1962	0.0427, 0.1152
R indices (all data) (R_1, wR_2)	0.0989, 0.2326	0.0860, 0.2029	0.0486, 0.1208
Largest diff. peak and hole	0.917 and -1.087	1.386 and -0.578	0.911 and -0.518

$(c.A^{\circ})$	
-----------------	--

Table S3. Selected bond lengths (Å) and bond angles (°) for complexes C-I, C-II and C-IV

C-I								
Selected	bonds	Selected angles						
Cu(1)-N(5)	1.944(4)	N(5)-Cu(1)-N(1)	170.58(19)	N(4)-Cu(1)-N(3)	158.5(2)			
Cu(1)-N(1)	2.000(5)	N(5)-Cu(1)-N(4)	79.48(19)	N(5)-Cu(1)-N(2)	109.36(18)			
Cu(1)-N(4)	2.044(5)	N(1)-Cu(1)-N(4)	100.5(2)	N(1)-Cu(1)-N(2)	79.98(19)			
Cu(1)-N(3)	2.045(5)	N(5)-Cu(1)-N(3)	80.61(19)	N(4)-Cu(1)-N(2)	99.88(19)			
Cu(1)-N(2)	2.215(5)	N(1)-Cu(1)-N(3)	97.77(19)	N(3)-Cu(1)-N(2)	94.38(18)			
	· · ·	(C-II		• • •			
Selected	bonds		Selected angles					
Cu(01)-N(2)	1.947(4)	N(2)-Cu(01)-N(5)	176.74(16)	N(2)-Cu(01)-N(6)	103.24(16)			
Cu(01)-N(5)	1.998(4)	N(2)-Cu(01)-N(3)	78.62(16)	N(5)-Cu(01)-N(6)	76.49(15)			
Cu(01)-N(3)	2.109(5)	N(5)-Cu(01)-N(3)	104.63(16)	N(3)-Cu(01)-N(6)	94.14(17)			
Cu(01)-N(1)	2.112(4)	N(2)-Cu(01)-N(1)	78.64(16)	N(1)-Cu(01)-N(6)	89.75(17)			
Cu(01)-N(6)	2.223(4)	N(5)-Cu(01)-N(1)	98.11(16)	N(2)-Cu(01)-N(4)	103.42(16)			
Cu(01)-N(4)	2.240(4)	N(3)-Cu(01)-N(1)	157.22(16)	N(5)-Cu(01)-N(4)	76.97(15)			
		N(3)-Cu(01)-N(4)	89.75(17)	N(1)-Cu(01)-N(4)	96.80(17)			
		N(6)-Cu(01)-N(4)	153.30(15)					
	C-IV							
Selected	bonds	Selected angles						
Cu(01)-N(2)	1.923(2)	N(2)-Cu(01)-N(4)	167.10(11)	N(3)-Cu(01)-N(1)	159.88(10)			
Cu(01)-N(4)	1.950(2)	N(2)-Cu(01)-N(3)	80.20(9)	N(2)-Cu(01)-O(1)	95.26(10)			
Cu(01)-N(3)	2.025(2)	N(4)-Cu(01)-N(3)	101.98(10)	N(4)-Cu(01)-O(1)	97.25(10)			
Cu(01)-N(1)	2.035(3)	N(2)-Cu(01)-N(1)	79.75(10)	N(3)-Cu(01)-O(1)	94.06(9)			
Cu(01)-O(1)	2.389(2)	N(4)-Cu(01)-N(1)	97.94(11)	N(1)-Cu(01)-O(1)	86.17(9)			

Complex	IC ₅₀ (μM)	Ref.
$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	(1) 1.9 ± 0.1^{a} (2) 1.2 ± 0.1^{a}	1

R = (5); (6)	(5) 1.02 ± 0.04^{b} 2.54 ± 0.05^{c} (6) 0.40 ± 0.06^{b} 0.95 ± 0.05^{c}	2
	(1) $17.3\pm 20.5\pm 43\pm 2.9\pm$	
	$0.3^{b} 0.2^{a} 0.3^{d} 0.1^{c}$	
	(2) $2.1\pm 4.2\pm >100^{d} >100^{c}$	
	0.1 ^b 0.2 ^a	
	(3) >100 ^b >100 ^a >100 ^d >100 ^c	
$B = \sum_{n=1}^{n} O(1, 4); \sum_{n=1}^{n} S(2, 5); \sum_{n=1}^{n} O(1, 4);$	(4) $81.7\pm 64.3\pm >100^{d} 5.9\pm$	3
	$0.3^{\rm b}$ $0.3^{\rm a}$ $0.1^{\rm c}$	
s s	(5) $20.5\pm$ $22.6\pm$ $62.3\pm$ $4.6\pm$	
	$0.4^{\rm b}$ $0.3^{\rm a}$ $0.5^{\rm d}$ $0.1^{\rm c}$	
	(6) >100 ^b 70.1 \pm 89 \pm 2.6 \pm	
	0.4^{a} 0.5^{d} 0.1^{c}	
$\begin{bmatrix} & & & & & & \\ & & & & & & \\ & & & & & $	(1) 4.57 μM ^d (2) 1.98 μM ^d	4

^a A549 cell; ^b HCT116 cell; ^cA2780 cell; ^dMCF-7 cell

- 1. B. Đ. Glišić, J. Nikodinovic-Runic, T. Ilic-Tomic, H. Wadepohl, A. Veselinović, I. M. Opsenica and M. I. Djuran, *Polyhedron*, 2018, **139**, 313-322.
- 2. A. Maroń, K. Czerwińska, B. Machura, L. Raposo, C. Roma-Rodrigues, A. R. Fernandes, J. G. Małecki, A. Szlapa-Kula, S. Kula and S. Krompiec, *Dalton Trans.*, 2018, **47**, 6444-6463.
- K. Czerwińska, B. Machura, S. Kula, S. Krompiec, K. Erfurt, C. Roma-Rodrigues, A. R. Fernandes, L.
 S. Shul'pina, N. S. Ikonnikov and G. B. Shul'pin, *Dalton Trans.*, 2017, 46, 9591-9604.
- 4. M. Salimi, K. Abdi, H. M. Kandelous, H. Hadadzadeh, K. Azadmanesh, A. Amanzadeh and H. Sanati, *BioMetals*, 2015, **28**, 267-278.