Probing the Strong Magnetic Exchange Behaviour for Transition Metal-Radical Complexes: A DFT Case Study

Mukesh Kumar Singh*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai,

Maharashtra, India-400076.

Email: mklsingh36@gmail.com.

	M-N(1,3)	M-N(2,4)	Avg(M-N(1-4))	Avg. M-X-X (°)
Complex	Å	Å	Å	
1 (Cr ^{III})	2.009	1.998	2.004	174.5
2 (Mn ^{II})	2.120	2.109	2.115	176.9
3 (Fe^{II})	2.096	2.077	2.089	177.1
4 (Co ^{II})	2.049	2.078	2.064	174.3
5 (Fe^{II})	2.096	2.062	2.079	177.5
5 _{XRD} (Fe ^{II})	2.103	2.042	2.073	173.0

Figure S1. Representative DFT optimized structures for complexes 1-5 and experimental structure for complex 5 (5_{XRD}) with selected structural parameters. Here, A and B are metal-radical distance (Å) and C is Metal-X-X angle/plane (°).

Figure S2. Energies of various computed spin-states against different S values. The red circles indicate the ground S_T value in each case for complexes (a-e) 1-5 respectively.

Figure S3. Magnetic orbital energies for complexes 1-5.

Figure S4. (a-d) Lowedin spin density plots for complexes 1-4 respectively, suggesting strong metal-radical magnetic interactions and are in excellent agreement to the Mulliken spin population. The isodensity surface represented corresponds to a value 0.001 e/bohr³.

Figure S5. Magnetic orbital energies for the magneto-structural models.

Spin Configurations	S value for complexes 1, 2, 3, 4, 5	Spin orientation		
	respectively with respect to	M1	Radical	M2
	corresponding spin configurations			
1	7/2, 11/2, 9/2, 7/2, 9/2	α	α	α
2	1/2, 1/2, 1/2. 1/2, 1/2	β	α	α
3	1/2, 1/2, 1/2. 1/2, 1/2	α	α	β
4	5/2, 9/2, 7/2, 5/2, 7/2	α	β	α

Table S1. Spin configurations used for all five complexes to estimate J_1 and J_2 .

Table S2. SHAPE analysis performed on all complexes. SHAPE analysis suggests coordination

 environment around metals close to octahedral.

JPPY-6	5	C5v	Johnson	pentagonal	pyramid	J2	
TPR-6	4	D3h	Trigonal	prism			
OC-6	3	Oh	Octahedron				
PPY-6	2	C5v	Pentagonal	pyramid			
HP-6	1	D6h	Hexagon				
Structure [ML6}			JPPY-6	TPR-6	OC-6	PPY-6	HP-6
1 (Cr1)			26.677,	9.751,	2.291,	22.708,	28.958
1 (Cr2)			26.675,	9.742,	2.292,	22.704,	28.954
2 (Mn1)			24.153,	9.218,	4.189,	20.704,	29.154
2 (Mn2)			24.155,	9.220,	4.188,	20.707,	29.152
3 (Fe1)			24.460,	9.033,	3.687,	20.846,	29.031
3 (Fe2)			24.457,	9.029,	3.688,	20.842,	29.033
4(Co1)			24.948,	9.419,	3.271,	21.240,	29.528
4 (Co2)			24.951,	9.421,	3.270,	21.243,	29.527
5 (Fe1)			23.947,	8.491,	3.760,	20.628,	28.035
5 (Fe2)			23.947,	8.491,	3.760,	20.628,	28.035
5 * (Fe1)			23.517,	10.184,	2.978,	20.570,	26.909
5 * (Fe2)			23.517,	10.185,	2.978,	20.571,	26.910

Table S3. DFT computed overlap values for complex **1-5**. Larger overlap contributes to antiferromagnetic interaction, whereas orthogonality of the magnetic orbitals contributes to ferromagnetic interaction. Here, the values in bracket are the overlap integral values for complex **5** X-ray structure (5_{XRD}).

Complex 1	Radical orbital
	0.552
$CI d_{yz}$	0.333
$\operatorname{Cr} \mathfrak{a}_{\mathrm{xz}}$	0.046
$\operatorname{Cr} d_{xy}$	0.092
Complex 2	Radical orbital
$\operatorname{Mn} d_{x^2-y^2}$	0.007
$\operatorname{Mn} d_z^2$	0.000
Mn d _{xz}	0.000
Mn d _{vz}	0.232
$Mn d_{xy}$	0.053
, Ay	
Complex 3	Radical orbital
Fe $d_x^2 - v^2$	0.014
Fe d_z^2	0.000
$Fe d_{xz}$	0.009
Fe d_{yz}	0.283
, j 2	
Complex 4	Radical orbital
Co $d_{x^{2}-v^{2}}^{2}$	0.161
$\operatorname{Co} d_z^{2}$	0.052
$Co d_{xz}$	0.078
Complex 5 (5 *)	Radical orbital
Fe $d_{x^2-v^2}$	0.013 (0.011)
$\operatorname{Fe} d_z^2$	0.001 (0.001)
$Fe d_{xz}$	0.034 (0.005)
Fe d _{vz}	0.277 (0.214)
y 2	

Table S4. DFT calculated Mulliken spin density values for complexes **1-5**. The values given in the brackets are DFT computed Lowedin spin density values for complexes **1-4** using Orca suite of program employing the UB3LYP functional using the Alhrichs def2-TZVP basis set for the metal ions and nitrogen atoms. While for the remaining atoms we have used the def2-SVP basis set with an auxiliary def2/J columbic fitting basis set for all atoms. Increased integration grids (Grid 5 in ORCA) along with tight SCF convergence were used.

Complex	M1 spin	Radical	M2 spin	L1+L1
1	3.081 (2.936)	1.019 (1.128)	3.081 (2.936)	-0.181 (0.000)
2	4.778 (4.691)	1.261 (1.320)	4.778 (4.691)	0.184 (0.299)
3	3.778 (3.662)	1.316 (1.344)	3.778 (3.709)	0.127 (0.285)
4	2.718 (2.669)	1.333 (1.363)	2.718 (2.669)	0.231 (0.298)
5	3.734	1.313	3.734	0.219
$5_{\rm XRD} ({\rm Fe^{II}})$	3.767	1.308	3.767	0.159

		$ ho^a$	λ1	λ2	λ3	$ abla^2 ho^b$	G	1/4(\(\V2\rho)	Н	
Complex 1										
Cr1	N1	0.0942	-0.1274	-0.1127	0.6000	0.3599	0.1040	0.0900	-0.0140	
Cr1	N2	0.0958	-0.1303	-0.1123	0.6234	0.3808	0.1096	0.0952	-0.0144	
Cr2	N3	0.0958	-0.1303	-0.1124	0.6234	0.3808	0.1096	0.0952	-0.0144	
Cr2	N4	0.0941	-0.1274	-0.1126	0.5999	0.3598	0.1040	0.0900	-0.0140	
	Complex 2									
Mn1	N1	0.0734	-0.0988	-0.0861	0.4639	0.2790	0.0839	0.0697	-0.0142	
Mn1	N2	0.0732	-0.0987	-0.0887	0.4627	0.2753	0.0830	0.0688	-0.0142	
Mn2	N3	0.0732	-0.0987	-0.0888	0.4628	0.2753	0.0831	0.0688	-0.0142	
Mn2	N4	0.0734	-0.0988	-0.0861	0.4639	0.2790	0.0839	0.0697	-0.0142	
				Com	plex 3					
Fe1	N1	0.0749	-0.0925	-0.0708	0.5018	0.3384	0.0970	0.0846	-0.0124	
Fe1	N2	0.0722	-0.0934	-0.0707	0.4794	0.3153	0.0905	0.0788	-0.0116	
Fe2	N3	0.0727	-0.1052	-0.0654	0.4797	0.3091	0.0891	0.0773	-0.0119	
Fe2	N4	0.0769	-0.1137	-0.0966	0.5040	0.2938	0.0871	0.0734	-0.0137	
				Com	plex 4					
Co1	N1	0.0794	-0.1057	-0.0787	0.5011	0.3167	0.0966	0.0792	-0.0174	
Co1	N2	0.0794	-0.1057	-0.0787	0.5010	0.3167	0.0965	0.0792	-0.0174	
Co2	N3	0.0733	-0.0911	-0.0726	0.5169	0.3533	0.1062	0.0883	-0.0178	
Co2	N4	0.0733	-0.0911	-0.0726	0.5169	0.3533	0.1062	0.0883	-0.0178	
				Com	plex 5					
Fe1	N1	0.0726	-0.0916	-0.0691	0.4591	0.2985	0.0886	0.0746	-0.0139	
Fe1	N2	0.0780	-0.0962	-0.0755	0.5035	0.3318	0.0990	0.0830	-0.0160	
Fe2	N3	0.0726	-0.0916	-0.0691	0.4591	0.2985	0.0886	0.0746	-0.0139	
Fe2	N4	0.0780	-0.0962	-0.0755	0.5035	0.3318	0.0990	0.0830	-0.0160	

Table S5. Bond critical point (BCP) properties for X-ray and optimized structures of complexes 1-5. AIM analysis was performed at the same computational level as used for single point calculations. ^aThe electron density at the bond critical density (BCP). ^bThe Laplacian of the electron density at the BCP. ^cThe electronic kinetic energy density ^dThe total energy density at the BCP.

Table S6. Magneto-structural studies performed on model **5a/5b** with respect to metal-radical distance and metal-radical planarity. Here, A and B parameters are metal-radical distances in Å and C parameter is metal-radical planarity (angle Fe-X-X, X is the dummy atom placed between center of two carbon atoms of phenyl ring)

Magneto- structural Models	Α	В	Avg(AB)	С	<i>J</i> cm ⁻¹	Fe ^{II}	Rad	L
D-1	1.998	1.856	1.927	177.3	-20.5	3.795	1.136	0.069
D-2	2.071	1.929	2.000	177.3	-110.1	3.794	1.149	0.057
D-3	2.167	2.024	2.096	177.3	-164.2	3.797	1.151	0.052
D-4	2.224	2.081	2.153	177.3	-174.7	3.800	1.145	0.054
D-5	2.304	2.160	2.232	177.3	-176.1	3.806	1.134	0.060
D-6	2.385	2.241	2.313	177.3	-172.2	3.810	1.123	0.067
P-1	2.100	2.090	2.095	180.0	-151.9	3.809	1.133	0.057
P-2	2.113	2.078	2.096	178.3	-153.7	3.812	1.129	0.058
P-3	2.138	2.058	2.098	176.5	-163.4	3.735	1.137	0.128
P-4	2.163	2.039	2.101	174.8	-184.6	3.816	1.124	0.060
P-5	2.189	2.022	2.106	173.0	-209.6	3.817	1.123	0.060
P-6	2.217	2.006	2.112	171.3	-235.5	3.813	1.126	0.061