Supporting Information

P-functionalized and O-deficient TiO_n/VO_m nanoparticles grown on Ni foam as electrode for supercapacitor: epitaxial grown heterojunction and visible-light-driven photoresponse

Keyu Tao, Lian Wang, Yang Hai and Yun Gong*

Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China. E-mail: gongyun7211@cqu.edu.cn; Tel: +86-023-65678932

Sample	First-step hy	drothermal synthesis	Second-step phosphorization		
r r	V ₂ O ₅ (mg)	$H_2O_2(mL)/H_2O(mL)$	NaH ₂ PO ₂ (mg)	TiCl ₄ (μL)	
VO _m /NF	20	2/8	/	/	
P-VO _m /NF	20	2/8	100	/	
P-TiO _n -VO _m /NF	20	2/8	100	50	
P-TiO ₂ -VO _m /NF	20	2/8	100	150	

Table S1 The names of the samples synthesized under different conditions.

Fig. S1 XRD patterns of VO_m/NF, P-VO_m/NF, P-TiO₂-VO_m/NF and the standard

profiles.

Sample VO _m /NF		P-VO _m /NF	P-TiO _n -V	P-TiO ₂ -	
			Before cycling test After cycling		VO _m /NF
Ni	71.8	11.1	14.4/11.8	25.7	5.6
V	14.6	9.1	32.9/9.8	0.6	1.0
Ο	13.6	50.4	42.1/65.4	63.1	66.6
Р	/	29.4	9.1/8.4	9.1	3.6
Ti	/	/	1.5/4.6	0.6	23.2
K	/	/	/	0.9	

 Table S2 The atomic percentages (at. %) in the samples.

(a)

Fig. S2 SEM (a) and EDS (b) as well as elemental mappings (inset) of VO_m/NF .

(c)

Fig. S3 SEM (a, b) and EDS as well as elemental mappings (inset) (c) of P-TiO₂- VO_m/NF.

Table S3 Comparison of XPS binding energies (eV) in VO_m/NF, P-VO_m/NF and P-TiO_n-VO_m/NF.

Sample		VO _m /NF	P-VO _m /NF	P-TiO _n -VO _m /NF	
	Ni(0)	852.4	852.4	852.4	
NI 2p	Ni ²⁺	856.2/873.7	856.2/873.7	856.2/873.7	
	V ²⁺	/	512.6	/	
V 2p	V ⁴⁺	516.8	516.2/522.3	516.3	
-	V ⁵⁺	517.5/524.5	518.0/524.2	517.2/524.5	
O 1s	Metal-O	530.4	531.1	531.3	
	-OH	531.8	532.4	533.0	
Metal-P		/	129.0	133.6	
P 2p	P-O	/	129.2	134.4	
Ti 2p	Ti ²⁺	/	/	455.4/460.2	
	Ti ³⁺	/	/	456.8/462.0	
	Ti ⁴⁺	/	/	458.6/464.2	

Fig. S4 SAED pattern of the nanoparticles in $P-TiO_n-VO_m/NF$.

Fig. S5 Nitrogen adsorption/desorption isotherm curve (a) and pore size distribution curve (b) of $P-TiO_n-VO_m/NF$.

Fig. S6 The electrochemical performance of PH₃ treated bare NF.

Fig. S7 The EIS plots of P-VO_m/NF and P-TiO_n-VO_m/NF.

Fig. S8 CV curves (20-200 mV s⁻¹) at different scanning rates of P-TiO_n-VO_m/NF (**a**), P-VO_m/NF (**b**) and VO_m/NF (**c**). The relationship between capacitive currents at 0.15 V vs RHE and scanning rates (**d**).

Table S4 Comparison of electrochemical performances of previous titanium oxides and vanadium oxides reported previously.

Active	Specific	Electro-	Super-	Energy density/Power	Capacity	Ref.
material	capacity	lyte	capacitor	density	retention	
OD-TiO ₂ /G	402 F g ⁻¹	1 M KOH	OD-	14.1 Wh kg ⁻¹ /8.5 kW kg ⁻¹	/	1
			TiO ₂ /G//OD-			
			TiO ₂ /G			
VO _x @MoO ₃	683 F g ⁻¹	5 M KCl	VO _x @MoO ₃ //	$1.63 \text{ mWh } \text{cm}^{-3}/0.0325$	87 % (9000	2
			MnO ₂	W cm ⁻³	cycles)	
VO ₂ /AEG	78 mAh	4 M KOH	VO ₂ /AEG//	41.6 Wh kg ⁻¹ /904 W kg ⁻¹	93 % (10000	3
	g-1		C-V ₂ NO		cycles)	
GF+VO ₂ /	485 F g ⁻¹	1 M K ₂ SO ₄	GF+VO ₂ /HM	14.5 Wh kg ⁻¹ /0.72 kW kg ⁻	N/A	4
HMB			B//AC	1		
Co ₃ O ₄ /	847 F g ⁻¹	2 М КОН	Co ₃ O ₄ /	38 Wh kg ⁻¹ /275 W kg ⁻¹	95 % (5000	5
$Co_3(VO_4)_2$			$Co_3(VO_4)_2$		cycles)	
			//AC			

HPCF@VN	241 F g ⁻¹	6 M KOH	HPCF@VN//	39.3 Wh kg ⁻¹ /400 W kg ⁻¹	78 % (10000	6
			Ni(OH) ₂		cycles)	
VO(OH) ₂ /	512 C g ⁻¹	1 M LiClO ₄	VO(OH) ₂ /	32.1 Wh kg ⁻¹ /63.7 W kg ⁻¹	90 % (2000	7
CNT			CNT//		cycles)	
			VO(OH) ₂ /			
			CNT			
NiV ₂ S ₄	639 C g ⁻¹	6 M KOH	Ni ₃ (VO ₄) ₂ //	45.1 Wh kg ⁻¹ /240 W kg ⁻¹	91 % (2000	8
			AC		cycles)	
P-TiO _n -	785 C g ⁻¹	2 M KOH	P-TiOn-	37.2 Wh kg ⁻¹ /1 kW kg ⁻¹	80 % (10000	This
VO _m /NF			VOm/NF//AC		cycles)	work

Table S5 Parameters in the equivalent circuits for $P-TiO_n-VO_m/NF$ at different stages.

	R _S	C_1	R _{ct}	W	R _w	C _w
	$/\Omega~cm^{-2}$	/F cm ⁻²	$/\Omega~cm^{-2}$	$/\Omega~cm^{-2}$	$/\Omega~cm^{-2}$	/F cm ⁻²
Initial	0.12	3.0×10 ⁻⁴	1.86	0.008	0.01	1.2×10 ⁻⁴
After 10000 cycles	0.23	3.4×10-4	13.43	0.009	0.01	2.3×10-4
Under illumination	1.33	4×10-4	1.39	0.007	0.01	0.001

Fig. S9 Crystal structures of $(TiO_{1.250})_{3.07}$ (**a**), VO (**b**) and $(TiO_{1.250})_{3.07}$ /VO (**c**). Color codes: grey, Ti; orange, O; olive, V.

(b)

(c)

Fig. S10 TDOS and PDOS of $(TiO_{1.250})_{3.07}$ (**a**), VO (**b**) and $(TiO_{1.250})_{3.07}$ /VO (**c**). Fermi level is denoted in dotted line. In the PDOS, blue, red and green lines represent s, p and d orbits, respectively.

Fig. S11 The electrochemical performance of activated carbon (AC) electrode: CV curves at different scanning rates (**a**) and GCD curves at different current densities (**b**).

Fig. S12 SEM (a) and EDS (b) as well as elemental mappings (inset) of P-TiO_n-VO_m/NF after 10000 GCD cycles

Fig. S13 Band structures (**a**, **b**) and TDOS as well as PDOS (**c**, **d**) for the anatase-type TiO_2 (**a**, **c**) and $(TiO_{1.25})_{3.07}$ (**b**, **d**). Fermi level is denoted in dotted line. In the PDOS, blue, red and green lines represent s, p and d orbits, respectively.

References:

- 1. S. Yang, Y. Li, J. Sun and B. Cao, Journal of Power Sources, 2019, 431, 220-225.
- 2. S. Q. Wang, X. Cai, Y. Song, X. Sun and X. X. Liu, *Advanced Functional Materials*, 2018, **28**, 1803901.
- 3. N. M. Ndiaye, N. F. Sylla, B. D. Ngom, F. Barzegar, D. Momodu and N. Manyala, *Electrochimica Acta*, 2019, **316**, 19-32.
- 4. X. Xia, D. Chao, C. F. Ng, J. Lin, Z. Fan, H. Zhang, Z. X. Shen and H. J. Fan, *Materials Horizons*, 2015, **2**, 237-244.
- W.B. Zhang, L.B. Kong, X.J. Ma, Y.C. Luo and L. Kang, *Journal of Power Sources*, 2014, 269, 61-68.
- F. Ran, Y. Wu, M. Jiang, Y. Tan, Y. Liu, L. Kong, L. Kang and S. Chen, *Dalton Transactions*, 2018, 47, 4128-4138.
- M. Chen, Y. Zhang, Y. Liu, J. Zheng and C. Meng, *Applied Surface Science*, 2019, 492, 746-755.
- 8. R. Kumar, P. Rai and A. Sharma, *Journal of Materials Chemistry A*, 2016, 4, 17512-17520.