Electronic supplementary information

Huiyeong Ju,^a Honoka Tenma,^a Miki Iwase,^a Eunji Lee,^a Mari Ikeda,^c Shunsuke Kuwahara,^{ab} Yoichi Habata^{*ab}

^aDepartment of Chemistry and ^bResearch Center for Integrated Properties, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan ^cDepartment of Chemistry, Education Center, Faculty of Engineering, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275-0023, Japan

Table of Contents

Table S1 $[\alpha]_D$ of chiral alkyl nitriles5
Scheme S1 Synthesis of tetra-armed cyclens5
Fig. S1 ¹ H and ¹³ C NMR spectra of 2a
Fig. S2 ¹ H and ¹³ C NMR spectra of 2b7
Fig. S3 ¹ H and ¹³ C NMR spectra of 2c
Fig. S4 ¹ H and ¹³ C NMR spectra of 2d9
Fig. S5 ¹ H and ¹³ C NMR spectra of 2e10
Fig. S6 X-ray structure of 2a, 2d and 2e
Fig. S7 The interactions in 2e molecules
Fig. S8 The interactions in 2a/Ag ⁺ complex 12
Fig. S9X-ray structure of $2b$ /AgCF $_3$ SO $_3$ 12
Fig. S10X-ray structure of 2c/AgCF3SO313
Fig. S11 X-ray structure of $2a/Cd(NO_3)_2$ and $2a/Co(NO_3)_2$
Fig. S12 Ag ⁺ ion-induced ¹ H NMR spectral changes of 2a14
Fig. S13 Ag ⁺ ion-induced ¹ H NMR spectral changes of 2b14
Fig. S14 Ag ⁺ ion-induced ¹ H NMR spectral changes of 2c15
Fig. S15 Ag ⁺ ion-induced ¹ H NMR spectral changes of 2d15
Fig. S16 Ag ⁺ ion-induced ¹ H NMR spectral changes of 2e16
Fig. S17 Comparative ¹ H NMR spectra of 2a
Fig. S18 Comparative ¹ H NMR spectra of 1
Fig. S19 Acetonitrile-induced ¹ H NMR spectral changes of 2a/Ag ⁺ complex17
Fig. S20 Bulky nitrile-induced ¹ H NMR spectral changes of 2a/Ag ⁺ complex18
Table S2 Stability constants of acetonitrile and bulky nitrile guests with 2a/Ag*18
Fig. S21 CD spectrum of chiral cyanohydrin (G6) (3.00 x 10 ⁻³ M)19
Fig. S22 (S)-G1 and (R)-G1-induced ¹ H NMR spectral changes20
Fig. S23 HyperNMR output for $2a/Ag^+$ complex with (<i>S</i>)-G1 and (<i>R</i>)-G121
Fig. S24 Diffusion-ordered spectroscopy (DOSY) of $2a/Ag^+$ and (S)-G121
Fig. S25 Guest-induced CD and UV-vis changes for 2a and another metal22

Fig. S26	Chiral nitriles-induced CD spectral changes of 2a /Ag ⁺ complex	.22
Fig. S27	Chiral nitrile-induced ¹ H NMR spectral changes of 2a /Ag ⁺ complex	.23
Table S3	Stability constants of chiral nitrile guests with 2a /Ag ⁺ complex	.23
Fig. S28	Structure of chiral amines as a guest (G7-G10)	.24
Table S4	$[\alpha]_D$ of chiral alkyl amines	24
Fig. S29	CD spectra of 2a/Ag ⁺ complex, chiral G7 and chiral G7@2a/Ag ⁺	.25
Fig. S30	CD spectra of 2a /Ag ⁺ in presence of G7 with various <i>ee</i> values	.25
Fig. S31	Chiral amines-induced CD spectral changes of 2a/Ag ⁺ complex	.26
Reference	ces	26
Table S5	Crystallographic Data and Structure Refinement	.27
Table S6	Selected Bond Lengths (Å) and Bond Angles (°) for 2a /Ag	.29
Table S7	Selected Bond Lengths (Å) and Bond Angles (°) for 2a /Cd	.29
Table S8	Selected Bond Lengths (Å) and Bond Angles (°) for 2a /Co	.30
Table S9	Selected Bond Lengths (Å) and Bond Angles (°) for 2b /Ag	.30
Table S1	0 Selected Bond Lengths (Å) and Bond Angles (°) for 2c/Ag	.30

Compound	Temp. (°C)	[ɑ] _D	Compound	Temp. (°C)	[ɑ] _D
CI OH (R)- G1	20	+7.2 (c 3, CHCl ₃) ⁵¹	(S)-G4	20	+4.60 (c 5.09, CHCl ₃)
CI ÖH (S)-G1	20	-11 (neat) ^{s2}	$\rightarrow 0 \xrightarrow{(R) (R)}_{O O O}_{(R,R)-G5} CN$	*	+1.33 (c 1, CHCl ₃) ^{s3}
(S)-G2	20	+37.5 (neat)	MeO (R)-G6	27.2	44.7 (c 1.03, CHCl ₃) ^{s4}
(S)-G3	23	+8.79 (c 5.11, CHCl ₃)			

Table S1 $[\alpha]_D$ of chiral alkyl nitriles

*Temperature was not written in the reference.

Scheme S1 Synthesis of tetra-armed cyclens with substituted styrylmethyl groups.

Fig. S1 (a) ¹H and (b) ¹³C NMR spectra of 2a in CD_2CI_2 .

Fig. S2 (a) 1 H and (b) 13 C NMR spectra of 2b in CDCl₃.

Fig. S3 (a) 1 H and (b) 13 C NMR spectra of 2c in CDCl₃.

Fig. S4 (a) 1 H and (b) 13 C NMR spectra of 2d in CDCl₃.

Fig. S5 (a) 1 H and (b) 13 C NMR spectra of **2e** in CDCl₃.

Fig. S6 X-ray structure of (a) **2a**, (b) **2d** and (c) **2e**. Compounds **2a** and **2d** lies about an inversion centre. The asymmetric unit of **2e** has three half **2e** molecules, each lying about independent inversions centres. Difference-map plots (**2d** and **2e**) show that all methyl H atoms are correctly oriented. Hydrogen atoms omitted.

Fig. S7 The interactions between two **2e** molecules; CH $-\pi$ interactions (pink dotted line, 2.771 and 2.774 Å) and (b) hydrogen bonds (green dotted line, 2.564 and 2.708 Å). Non-coordinated anions are omitted.

Fig. S8 The interactions between (a) $Ag^+-\pi$ interaction (green dotted line) and (b) $H_{acetonitrile}$ -benzene plane distances (pink dotted line) in **2a**/Ag⁺ complex. Non-coordinated anions are omitted.

Fig. S9 X-ray structure of **2b**/AgCF₃SO₃: (a) side view showing Ag⁺– π interaction (green dotted line) and (b) top view showing H_{acetonitrile}-benzene plane distances (pink dotted line). Difference-map plots show that the acetonitrile methyl H atoms are correctly oriented. Non-coordinated anions are omitted.

Fig. S10 X-ray structure of **2c**/AgCF₃SO₃: (a) side view showing Ag⁺– π interaction (green dotted line) and (b) top view showing H_{acetonitrile}-benzene plane distances (pink dotted line). Difference-map plots show that the acetonitrile methyl H atoms are correctly oriented. Non-coordinated anions are omitted.

Fig. S11 X-ray structure of (a) $2a/Cd(NO_3)_2$ and (b) $2a/Co(NO_3)_2$. Hydrogen atoms and noncoordinated anion are omitted. Compound $2a/Co^{2+}$ lies across a mirror plane.

Fig. S12 Ag⁺ ion-induced ¹H NMR spectral changes of 2a in a mixture of CD₂Cl₂ and CD₃OD.

Fig. S13 Ag⁺ ion-induced ¹H NMR spectral changes of 2b in a mixture of CD_2CI_2 and CD_3OD .

Fig. S14 Ag⁺ ion-induced ¹H NMR spectral changes of 2c in a mixture of CD_2CI_2 and CD_3OD .

Fig. S15 Ag⁺ ion-induced ¹H NMR spectral changes of 2d in a mixture of CD_2CI_2 and CD_3OD .

Fig. S16 Ag⁺ ion-induced ¹H NMR spectral changes of 2e in a mixture of CD_2Cl_2 and CD_3OD .

Fig. S17 Comparative ¹H NMR spectra of (a) CH_3CN , (b) CH_3CN+2a , (c) CH_3CN+Ag^+ , (d) $CH_3CN+2a+Ag^+$, (e) $CH_3CN+2a+Ag^++D_2O$ and (f) $2a+Ag^+$ in a mixture of CD_2Cl_2 and CD_3OD .

Fig. S18 Comparative ¹H NMR spectra of (a) CH_3CN , (b) CH_3CN+1 , (c) CH_3CN+Ag^+ , (d) $CH_3CN+1+Ag^+$ and (e) $1+Ag^+$ in a mixture of CD_2Cl_2 and CD_3OD .

Fig. S19 Acetonitrile-induced ¹H NMR spectral changes of $2a/Ag^+$ complex in a mixture of CD_2Cl_2 and CD_3OD .

Fig. S20 Bulky nitrile-induced ¹H NMR spectral changes of $2a/Ag^+$ complex in a mixture of CD₂Cl₂ and CD₃OD: (a) propionitrile, (b) isobutyronitrile and (c) pivalonitrile.

Table S2 Stability constants for the complexations of acetonitrile and bulky nitrile guests with **2a**/Ag⁺ complex

	Bulky Nitrile				
Acetonitrile	Propionitrile	Isobutyronitrile	Pivalonitrile		
2.1(1)	1.9(1)	1.7(1)	1.7(1)		

Fig. S21 CD spectrum of chiral cyanohydrin (**G6**) $(3.00 \times 10^{-3}M)$ in the EtOH/1,4-dioxane (9/1) solution.

Fig. S22 (a) (*S*)-**G1** and (b) (*R*)-**G1**-induced ¹H NMR spectral changes in CD_2CI_2/CD_3OD .

Fig. S23 HyperNMR output for $2a/Ag^+$ complex solution with (a) (S)-G1 and (b) (R)-G1.

The DOSY NMR spectrum of **2a**/Ag⁺ and (S)-**G1** (Fig. S22) revealed the presence of only one species in a solution for each substance. The experimental diffusion coefficient derived from the spectra measured in CD_2Cl_2/CD_3OD at 233 K was 7.08 × 10⁻¹⁰ m²/s.

Fig. S24 Diffusion-ordered spectroscopy (DOSY) of $2a/Ag^+$ and (S)-G1 in CD₂Cl₂/CD₃OD at 233K.

Fig. S25 Guest-induced (a) CD and (b) UV-vis spectral changes for 2a and another metal solutions.

Fig. S26 Chiral nitriles-induced CD spectral changes of **2a**/Ag⁺ complex: (a) (S)-**G2**, (b) (S)-**G3**, (c) (S)-**G4** and (d) (R,R)-**G5** ([**G**]= 30.0 x 10⁻³ M, [**2a**] = [AgOTf] = 3.00 x 10⁻³ M).

Fig. S27 Chiral nitrile-induced ¹H NMR spectral changes of $2a/Ag^+$ complex in a mixture of CD₂Cl₂ and CD₃OD: (a) (*S*)-**G2**, (b) (*S*)-**G3**, (c) (*S*)-**G4** and (d) (*R*,*R*)-**G5**.

When (*R*,*R*)-**G5** was examined under the same conditions (Fig. S26), initial negative and then positive Cotton effects were observed. The log*K* values of the interactions between the $2a/Ag^+$ complex with chiral guests **G2–G5** were in the range of 1.5–1.9 (Fig. S27 and Table S3).

Table S3 Stability constants for the complexations of chiral nitrile guests with 2a/Ag⁺ complex

Chiral Nitrile					
(<i>R</i>)- G1	(S)- G1	(S)- G2	(S)- G3	(S)- G4	(R,R)- G5
1.8(5)	1.7(3)	1.7(1)	1.6(1)	1.9(1)	1.5(1)

 $\label{eq:Fig.S28} Fig. S28 \quad \mbox{Structure of chiral amines as a guest (G7-G10)}.$

Compound	Temp. (°C)	[α] _D	Compound	Temp. (°C)	[α] _D
(<i>R</i>) <u>.</u> OH (<i>R</i>)- G7	20	-25.8 (c 1.8, EtOH) ^{s5}	(S) 	22	+3.7 (c 0.3, H ₂ O) ^{sa}
(S) OH (S)- G7	22	44.4 (c 1, MeOH) ^{s6}	(S) <u></u> NH ₂ (S)- G10	20	+18.1 (c 2.15, MeOH) ^{S9}
(S)-G8	26	-27.9 (neat) ^{s7}			

Table S4 $[\alpha]_D$ of chiral alkyl amines

Fig. S29 CD spectra ([**G**]= 30.0×10^{-3} M, [**2a**] = [AgOTf] = 3.00×10^{-3} M) of **2a**/Ag⁺ complex, chiral **G7** and chiral **G7@2a**/Ag⁺ in the mixed solvent (EtOH/1,4-dioxane = 9:1).

Fig. S30 (a) CD spectra (EtOH/1,4-dioxane, 273 K, $[2a/Ag^+] = 3.00 \times 10^{-3}$ M) of $2a/Ag^+$ in presence of **G7** (30.0 x 10^{-3} M) with various ee values and (b) the corresponding ee calibration plots at 260 nm.

Fig. S31 Chiral amines-induced CD spectral changes of $2a/Ag^+$ complex: (a) (*S*)-**G8**, (b) (*S*)-**G9** and (c) (*S*)-**G10** ([**G**]= 30.0 x 10⁻³ M, [**2a**] = [AgOTf] = 3.00 x 10⁻³ M).

References

- S1 X. Q. Li, Y. X. Yang, W. L. Wang, B. Hu, H. M. Xue, T. Y. Zhang and X. T. Zhang, *Chin. Chem. Lett.*, 2011, **22**, 765-767.
- S2 C. Jiang and H. Hong, Lett. Org. Chem., 2012, 9, 520-521.
- S3 P. L. Brewer, D. E. Butler, C. F. Deering, T. V. Le, A. Millar, T. N. Nanninga and B. D. Roth, *Tetrahedron Lett.*, 1992, **33**, 2279-2282.
- S4 Y.-C. Zheng, J.-H. Xu, H. Wang, G.-Q. Lin, R. Hong and H.-L. Yu, *Adv. Synth. Catal.*, 2017, **359**, 1185-1193.
- S5 M. A. Gray, L. Konopski and Y. Langlois, Synth. Commun., 1994, 24, 1381-1387.
- S6 Tokyo University of Science Educational Foundation Administrative Organization-US2011/319650, 2011, A1.
- S7 H. C. Brown, W. R. Heydkamp, Eli. Breuer and W. S. Murphy, J. Am. Chem. Soc., 1964, 86, 3565-3566.
- S8 P. C. J. Kamer, M. C. Cleij, R. J. M. Nolle, T. Harada, A. M. F. Hezemans and W. Drenth, *J. Am. Chem. Soc.*, 1988, **110**, 1581-1587.
- S9 M. C. Schopohl, A. Faust, D. Mirk, R. Fröhlich, O. Kataeva and S. R. Waldvogel, *Eur. J. Org. Chem.*, 2005, 2987-2999.

	2a	2a/Ag	2a/Cd	2a/Co	2b/Ag
formula	$C_{44}H_{52}N_4$	$C_{46}H_{55}AgF_6N_5P$	$C_{46}H_{56}CdCl_2N_6O_6$	$C_{44}H_{52}CoN_6O_6$	$C_{47}H_{51}AgF_3N_9O_{11}S$
formula weight	636.90	930.79	972.26	819.84	1114.90
Temperature (K)	150	120(2)	120(2)	120(2)	120(2)
crystal system	Triclinic	Monoclinic	Monoclinic	Orthorhombic	Triclinic
space group	<i>P</i> -1	P2 ₁ /n	P2 ₁ /c	Pnma	<i>P</i> -1
Ζ	1	4	4	4	2
a (Å)	8.1561(4)	9.8867(6)	18.948(3)	17.4039(10)	13.6723(5)
b (Å)	9.8581(5)	43.590(2)	26.442(4)	28.4415(16)	13.6784(5)
<i>c</i> (Å)	12.6906(7)	10.0840(6)	9.0080(13)	8.1734(4)	14.1978(5)
α (°)	67.2140(10)	90	90	90	71.0716(5)
β (°)	81.5070(10)	91.9702(12)	91.789(2)	90	86.9270(6)
γ (°)	80.4560(10)	90	90	90	89.7603(6)
V (Å ³)	923.80(8)	4343.2(4)	4511.2(12)	4045.8(4)	2507.77(16)
$D_{calc}(g/cm^3)$	1.145	1.423	1.432	1.346	1.476
µ (mm⁻¹)	0.067	0.566	0.657	0.481	0.523
$2\theta_{max}$ (°)	52	52	52	52	52
reflections collected	5313	25251	38044	22297	30173
independent	3609	8539	8874	4057	9840
reflections	$[R_{int} = 0.0112]$	$[R_{int} = 0.0715]$	$[R_{int} = 0.1233]$	$[R_{int} = 0.0596]$	$[R_{int} = 0.0448]$
goodness-of-fit on <i>F</i> ²	1.013	1.016	1.015	1.035	1.021
R_{1} , w $R_{2}[I > 2\sigma(I)]$	0.0395, 0.1070	0.0447, 0.0976	0.0668, 0.1608	0.0429, 0.1085	0.0493, 0.1306
R_1 , w R_2 [all data]	0.0486, 0.1159	0.0678, 0.1160	0.1172, 0.2008	0.0569, 0.1181	0.0579, 0.1384

Table S5 Crystallographic Data and Structure Refinement

	2c/Ag	2d	2e
formula	$C_{47}H_{51}AgF_7N_5O_3S$	C ₄₈ H ₆₀ N ₄ O ₄	$C_{52}H_{72}N_8$
formula weight	1006.85	757.00	809.17
Temperature (K)	120(2)	120(2)	120(2)
crystal system	Triclinic	Triclinic	Tetragonal
space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -4
Ζ	2	1	4
<i>a</i> (Å)	10.0234(3)	9.370(6)	17.703(2)
b (Å)	10.3546(3)	9.873(6)	17.703(2)
<i>c</i> (Å)	22.0904(7)	12.853(8)	14.619(3)
α (°)	97.2008(4)	101.209(10)	90
β (°)	95.9244(5)	110.101(10)	90
γ (°)	92.3991(5)	100.626(10)	90
<i>V</i> (Å ³)	2259.00(12)	1053.8(12)	4581.5(14)
$D_{calc}(g/cm^3)$	1.480	1.193	1.173
µ (mm⁻¹)	0.568	0.076	0.070
$2\theta_{max}$ (°)	52	52	52
reflections collected	26629	12267	26843
independent	8885	4141	9016
reflections	$[R_{int} = 0.0257]$	$[R_{int} = 0.0952]$	$[R_{int} = 0.1881]$
goodness-of-fit on <i>F</i> ²	1.043	0.980	1.030
R_1 , w R_2 [l > 2 σ (l)]	0.0260, 0.0672	0.0729, 0.1754	0.0990, 0.2147
R_1 , w R_2 [all data]	0.0294, 0.0741	0.1112, 0.2064	0.02344, 0.2843

Table 30 Selected D	onu Lengins (A) anu L	0110 Angles () 101 Zan	¬y
Ag1-N1	2.486(3)	Ag1-N2	2.488(3)
Ag1-N3	2.480(3)	Ag1-N4	2.491(3)
Ag1-N5	2.226(3)		
N1-Ag1-N2	75.72(10)	N1-Ag1-N3	118.36(9)
N1-Ag1-N4	74.45(10)	N1-Ag1-N5	121.21(10)
N2-Ag1-N3	74.71(10)	N2-Ag1-N4	119.08(10)
N2-Ag1-N5	120.61(11)	N3-Ag1-N4	74.90(10)
N3-Ag1-N5	120.42(10)	N4-Ag1-N5	120.31(11)

Table S6	Selected	Bond Leng	ths (Å)	and Bond	Angles (°) for 2a /Ag

Table S7	Selected Bond Lengths (/	A) and Bond Angles (°)) for 2a /Cd
----------	--------------------------	------------------------	---------------------

Cd1-N1	2.374(5)	Cd1-N2	2.510(5)
Cd1-N3	2.375(5)	Cd1-N4	2.497(6)
Cd1-O2	2.363(4)	Cd1-O4	2.405(5)
N1-Cd1-N2	75.17(18)	N1-Cd1-N3	121.23(18)
N1-Cd1-N4	75.4(2)	N1-Cd1-O2	132.56(18)
N1-Cd1-O4	96.56(17)	N2-Cd1-N3	75.40(17)
N2-Cd1-N4	120.11(18)	N2-Cd1-O2	84.32(18)
N2-Cd1-O4	151.85(17)	N3-Cd1-N4	77.3(2)
N3-Cd1-O2	93.01(17)	N3-Cd1-O4	129.64(17)
N4-Cd1-O2	149.29(18)	N4-Cd1-O4	82.22(18)
O2-Cd1-O4	81.92(17)		

Co1-N1	2.187(2)	Co1-N2	2.207(2)		
Co1-O1	2.138(2)	Co1-O2	2.174(2)		
N1-Co1-N2	80.16(8)	N1-Co1-N1A	82.05(11)		
N1-Co1-N2A	132.86(8)	N1-Co1-O1	131.27(6)		
N1-Co1-O2	91.21(7)	N2-Co1-N2A	80.82(13)		
N2-Co1-O1	92.07(7)	N2-Co1-O2	132.28(7)		
01-Co1-O2	59.37(9)				

Table S8 Selected Bond Lengths (Å) and Bond Angles (°) for 2a/Co

Table S9 Selected Bond Lengths (Å) and Bond Angles (°) for 2b/Ag

Ag1-N1	2.460(3)	Ag1-N2	2.479(3)
Ag1-N3	2.495(3)	Ag1-N4	2.536(3)
Ag1-N9	2.224(3)		
N1-Ag1-N2	74.64(9)	N1-Ag1-N3	117.55(9)
N1-Ag1-N4	75.26(10)	N1-Ag1-N9	116.35(10)
N2-Ag1-N3	73.70(10)	N2-Ag1-N4	117.46(9)
N2-Ag1-N9	124.04(10)	N3-Ag1-N4	73.98(10)
N3-Ag1-N9	126.04(10)	N4-Ag1-N9	118.36(10)

Table S10 Selected Bond Lengths (Å) and Bond Angles (°) for 2c/Ag					
Ag1-N1	2.4753(15)	Ag1-N2	2.4721(15)		
Ag1-N3	2.4933(15)	Ag1-N4	2.5283(16)		
Ag1-N5	2.2253(17)				
N1-Ag1-N2	76.11(5)	N1-Ag1-N3	117.94(5)		
N1-Ag1-N4	74.80(5)	N1-Ag1-N5	119.03(6)		
N2-Ag1-N3	74.12(5)	N2-Ag1-N4	117.79(5)		
N2-Ag1-N5	121.06(6)	N3-Ag1-N4	73.25(5)		
N3-Ag1-N5	123.01(6)	N4-Ag1-N5	121.14(6)		