Supplementary Materials

for

Cobalt Complexes of Redox Noninnocent Azo-aromatic Pincers. Isolation, Characterization, and Application as Catalyst for the Synthesis of Quinazolin-4(3H)-ones

Suman Sinha,^a Siuli Das,^a Rakesh Mondal,^a Sutanuva Mandal,^{*,b} and Nanda D. Paul^{*,a}

^aDepartment of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India

E-mail: ndpaul2014@chem.iiests.ac.in; ndpaul@gmail.com.

^bDepartment of Chemistry, Banwarilal Bhalotia College, GT Rd, Ushagram, Asansol, West Bengal 713303, India

E-mail: <u>sutanuva@gmail.com</u>.

	Table of Contents	
X-ray Crystallo	graphy	S 3
Figure S1	Oak Ridge thermal-ellipsoid plot (ORTEP) with complete atom numbering scheme of 1a .	S 3
Figure S2	Oak Ridge thermal-ellipsoid plot (ORTEP) with complete atom numbering scheme of 1b .	S4
Figure S3	Oak Ridge thermal-ellipsoid plot (ORTEP) with complete atom numbering scheme of 2 .	S4
Table S1	Crystal data and structure refinement parameters of 1a , 1b and 2 .	S5
Figure S4	The representation of FMOs of 1b .	S6
Figure S5	The representation of FMOs of 2 .	S7
Figure S6	UV-Vis spectra of 1a, 1b and 2.	S8
Table S2	UV-Vis data of 1a, 1b and 2.	S8
Figure S7	Cyclic voltammogram of 1a (black), 1b (red), 2 (green).	S9
Figure S8	IR spectroscopic analysis of the reaction mixture obtained	S9
	after stoichiometric alcohol dehydrogenation of 1-	
	phenylethanol (3u) under argon: involvement of azo/hydrazo	
	redox couple with catalyst 1b .	
Figure S9	IR spectroscopic analysis of the reaction mixture obtained	S10
C	after stoichiometric alcohol dehydrogenation of deuterated 1-	
	phenylethanol $(3u-D_2)$ under argon: involvement of	
	azo/hydrazo redox couple with catalyst 1b .	
Figure S10	IR spectroscopic analysis of the reaction mixture obtained	S11
	after stoichiometric alcohol dehydrogenation of 1-	
	phenylethanol (3u) under argon: involvement of azo/hydrazo	
	redox couple with catalyst 2.	
Figure S11	Detection of H_2O_2 . Absorption spectral changes during	S11
	formation of I_3 at 350 nm in presence of H_2O_2 .	G10 G10
NMR spectral o	lata of Quinazolin-4(3H)-ones.	S12-S18
Figure S12-57	Copies of 'H and "C NMR spectra.	S19-S41
Figure S58	cyclobutanol oxidation using cobalt complex 1 .	542
Table S3	DFT optimized coordinates for 1b .	S42-S43
Table S4	DFT optimized coordinates for 2 .	S44-S45
Table S5	DFT optimized coordinates for 1b with HOMO-LUMO mixing.	S46-47
Table S6	DFT optimized coordinates for 2 with HOMO-LUMO mixing.	S47-S49
References		S49-S50

X-ray Crystallography. The X-ray single crystal data of all the complexes were collected with monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) on a Bruker SMART Apex II diffractometer equipped with a CCD area detector. The crystals were positioned at 60 mm from the CCD and the spots were measured using 10s counting time. Data reduction was carried out using the SAINT-NT software package.¹ Multi-scan absorption correction was applied to all intensity data using the SADABS program.^{2,3} The structure was solved by a combination of direct methods with subsequent difference Fourier syntheses and refined by full matrix least squares on F^2 using the SHELX-2013 suite.⁴ All non-hydrogen atoms were refined with anisotropic thermal displacements. The crystal data together with refinement details are given in Table S1. In complex **2**, the cobalt center was found to be severely disordered, for which the cobalt sites were treated with a split model.

Figure S1. Oak Ridge thermal-ellipsoid plot (ORTEP) with complete atom numbering scheme of **1a**. Ellipsoids are drawn at the 50% probability level.

Figure S2. Oak Ridge thermal-ellipsoid plot (ORTEP) with complete atom numbering scheme of **1b**. Ellipsoids are drawn at the 50% probability level.

Figure S3. Oak Ridge thermal-ellipsoid plot (ORTEP) with complete atom numbering scheme of **2**. Ellipsoids are drawn at the 50% probability level.

	1a	1b	2
Empirical Formula	$C_{36}H_{24}Cl_4Co_2N_8$	$C_{18}H_{11}Cl_3CoN_4$	$C_{24}H_{16}Cl_2Co$
			N_6
Formula Weight	828.29	448.59	518.26
Temp (K)	296	294	127
Crystal System	monoclinic	triclinic	triclinic
Space Group	P 21/n	P-1	P-1
a (Å)	12.76(3)	8.9454(9)	8.4667(7)
b (Å)	8.66(2)	9.7562(9)	10.9982(9)
c (Å)	15.29(4)	10.7268(10)	12.1179(10)
α(°)	90	89.496(4)	101.699(2)
β (°)	104.64(10)	87.482(5)	98.267(2)
γ (°)	90	71.661(4)	90.736(2)
Volume (Å ³)	1635(7)	887.74(15)	1092.45(16)
Z	2	2	2
$D_c (Mg m^{-3})$	1.683	1.678	1.576
Crystal Dimens	0.06 x 0.30 x	0.05 x 0.25 x	0.06 x 0.22 x
(mm)	0.35	0.27	0.24
Theta Min-Max (°)	2.4, 25.1	2.19, 25.87	2.3, 27.162
Reflections	37875	21314	31435
Collected			
Unique Reflections	2898	3406	4840
Goodness-of-fit on	0.973	1.04	1.08
F ²			
Final <i>R</i> indices [I >	R= 0.0518,	R = 0.0399,	R = 0.0324,
2σ(I)]	WR2= 0.1275	WR2= 0.1186	WR2=0.0848
Largest diff. peak	-0.47, 0.43	-0.52, 0.61	-0.68, 0.56
and hole			

 Table S1. Crystal data and structure refinement parameters of 1a, 1b and 2.

Figure S4. The representation of FMOs of 1b.

Figure S5. The representation of FMOs of 2.

Figure S6. UV-vis spectra of catalyst 1a (black), 1b (red), and 2 (blue).

Table S2.	UV-vis	data of	1a ,	1b	and	2.
-----------	--------	---------	-------------	----	-----	----

Compound	$\lambda_{\text{max}}, \text{nm} (\epsilon, \text{M}^{-1} \text{ cm}^{-1})$
1a	404, (15,734), 342, (10,292), 300(9,422), 237, (20,749)
1b	396, (16,524), 335, (13,372), 235, (25,712)
2	376, (25,410), 321,(27,514), 233, (23,998)

Figure S7. Cyclic voltammogram of 1a (black), 1b (red), 2 (green).

Figure S8. IR spectroscopic analysis of the reaction mixture obtained after stoichiometric alcohol dehydrogenation of 1-phenylethanol (**3u**) under argon: involvement of azo/hydrazo redox couple with catalyst **1b**.

Figure S9. IR spectroscopic analysis of the reaction mixture obtained after stoichiometric alcohol dehydrogenation of deuterated 1-phenylethanol $(3u-D_2)$ under argon: involvement of azo/hydrazo redox couple with catalyst 1b.

Figure S10. IR spectroscopic analysis of the reaction mixture obtained after stoichiometric alcohol dehydrogenation of 1-phenylethanol (3u) under argon: involvement of azo/hydrazo redox couple with catalyst 2.

Figure S11. Detection of H_2O_2 . Absorption spectral changes during formation of I_3^- at 351 nm in presence of H_2O_2 .

NMR Spectral Data:

2-phenylquinazolin-4(3H)-one (5aa).^{5,7,10,11} Eluent: petroleum ether/ethyl acetate

(3:1): (199 mg, 90%) ; White solid, M.p :238-240 °C ; ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.55 (s, 1H), 8.18-8.15 (m, 3H), 7.86-7.81 (m, 1H), 7.74 (d, J = 8.08 Hz, 1H), 7.59-7.50 (m, 4H).

¹³C NMR (100MHz, DMSO- d_6): δ (ppm) = 162.7, 152.8, 149.2, 135.1, 133.2, 131.9, 129.4, 128.2, 128.0, 127.1, 126.3, 121.4.

2-(o-tolyl)quinazolin-4(3H)-one (5ba).¹⁰ Eluent: petroleum ether/ethyl acetate (3:1):

(169 mg, 72%), White solid; M.p: 225-226 °C.¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.44 (s, 1H), 8.17 (d, J = 7.92 Hz, 1H), 7.83 (t, J = 8.04 Hz, 1H), 7.68 (d, J = 7.68 Hz, 1H), 7.55-7.49 (m, 2H), 7.42 (t, J = 8.40, Hz,1H), 7.35-7.30 (m, 2H), 2.38 (s, 3H). ¹³C

NMR (100 MHz, DMSO- d_6): δ (ppm) =161.7, 154.3, 148.7, 136.1, 134.36, 134.4, 134.2, 130.5, 129.9, 129.1, 127.3, 126.6, 125.8, 125.6, 120.9, 19.6.

2-m-tolylquinazolin-4(3H)-one (5ca).^{6,12} Eluent: petroleum ether/ethyl acetate (3:1):

(167 mg, 71%), White solid; M.p: 212-213 °C. ¹H NMR (500 MHz, DMSO- d_6): δ (ppm) = 12.56 (s, 1H), 8.24 (d, J = 8.45 Hz, 1H), 8.11(s, 1H), 8.06 (d, J = 6.80 Hz, 1H), 7.92 (t, J = 7.30Hz, 1H), 7.83 (d, J = 7.90 Hz, 1H), 7.61 (t, J = 6.80 Hz, 1H), 7.53-7.48 (m, 2H), 2.50 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) = 162.7, 152.9, 149.3, 138.4, 135.1, 133.1, 132.5, 129.0, 128.7, 128.0, 127.0, 126.3, 125.4, 121.4, 21.4.

2-(p-tolyl)quinazolin-4(3H)-one (5da).^{6,10-13} Eluent: petroleum ether/ethyl acetate (3:1): (177 mg, 75%), White solid; M.p: 245-247 °C. ¹H NMR (500 MHz, DMSO- d_6): δ (ppm) = 12.44 (s, 1H), 8.14 (d, J = 8.05 Hz, 1H), 8.08 (d, J = 8.05 Hz, 2H), 7.82 (dd, J = 1.90, 6.70 Hz,

1H), 7.72 (d, J = 8.55 Hz, 1H), 7.50 (t, J = 6.65 Hz, 1H), 7.34 (d, J = 8.10 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (125 MHz, DMSO- d_6): δ (ppm) = 162.2, 152.2, 148.8, 141.5, 134.6, 129.9, 129.1, 127.7, 127.4, 126.4, 125.7, 120.8, 21.0.

acetate (3:1): (170 mg, 65%), White solid; M.p. 212 °C. ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.53 (s, 1H), 8.15 (d, J = 7.52 Hz, 1H), 7.83-7.77 (m, 2H), 7.73 (d, J = 4.04 Hz, 2H),

7.51 (t, J = 8.56 Hz, 1H), 7.44 (t, J = 9.04 Hz, 1H), 7.13 (dd, J = 3.52, 8.04 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) = 162.2, 159.3, 152.1, 148.6, 134.5, 134.0, 129.7, 129.3, 129.1, 126.6, 125.8, 120.1, 117.6, 112.6, 55.4.

2-(4-methoxyphenyl)quinazolin-4(3H)-one (5fa).^{6,10-13} Eluent: petroleum ether/ethyl

acetate (3:1): (176 mg, 70%), White solid; M.p: 238-239 °C. ¹H NMR (500 MHz, DMSO- d_6): δ (ppm) = 12.40 (s, 1H), 8.18 (d, J = 8.35 Hz, 2H), 8.12 (d, J = 7.75 Hz, 1H), 7.83-7.79 (m, 1H),

7.70 (d, J = 8.25 Hz, 1H), 7.48 (t, J = 7.60 Hz, 1H), 7.08 (d, J = 8.85 Hz, 2H), 3.84 (s, 3H).

2-(2,4-dimethoxyphenyl)quinazolin-4(3H)-one (5ga).¹³ Eluent: petroleum ether/ethyl

acetate (3:1): (219 mg, 78%), White solid; M.p: 206-207 °C. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 10.83 (s, 1H), 8.44 (d, *J* = 7.88 Hz, 1H), 8.20 (d, *J* = 8.64 Hz, 1H), 7.67 (d, *J* = 2.88 Hz,

2H), 7.37-7.33(m, 1H), 6.62 (dd, J= 7.48 Hz, 1.60 Hz,1H), 6.48 (d, J = 2.02 Hz, 1H), 3.96 (s, 3H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) =163.8, 162.1, 159.2, 150.7, 149.6, 134.4, 133.0, 127.6, 126.3, 126.0, 120.9, 112.6, 106.5, 98.7, 56.1, 55.6.

2-(4-tert-Butyl-phenyl)quinazolin-4(3H)-one (5ha).⁹ Eluent: petroleum ether/ethyl

acetate (3:1): (219 mg, 79%), White solid; M.p. 208 °C ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.49 (s, 1H), 8.16-8.11 (m, 3H), 7.83 (td, J = 1.60 Hz, 8.40 Hz, 1H), 7.73 (d, J = 8.04 Hz,

1H), 7.59 (d, J = 9.20 Hz, 2H), 7.51 (t, J = 6.92 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) =162.8, 154.9, 152.7, 149.3, 135.1, 130.4, 128.1, 127.9, 126.9, 126.3, 125.9, 121.3, 35.1, 31.3.

acetate (3:1): (172mg, 72%), White solid; M.p: 258-260 °C.¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.66 (s, 1H), 8.34-8.30 (m, 2H), 8.23(d, J = 7.80 Hz, 1H), 7.91 (t, J = 7.24 Hz, 1H), 7.81

(d, J = 7.80 Hz, 1H), 7.60 (t, J = 6.68 Hz, 1H), 7.47 (t, J = 8.36 Hz, 2H). ¹³C NMR(100 MHz, DMSO- d_6): δ (ppm) = 162.7, 151.9, 149.1, 135.1, 130.8 (d, J = 9.00 Hz), 129.7, 127.9, 127.1, 126.3, 121.3, 116.2, 116.0.

2-(2-chlorophenyl)quinazolin-4(3H)-one (5ja).^{6,12,13} Eluent: petroleum ether/ethyl

acetate (3:1): (174 mg 68%), White solid; M.p: 197 °C. ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.68 (s, 1H), 8.18 (d, J = 7.92 Hz, 1H), 7.86 (t, J = 7.08 Hz, 1H), 7.71 (d, J = 7.96 Hz, 1H), 7.66 (H), 7.62-7.55 (m, 3H), 7.49 (t, J = 8.84 Hz, 1H)

d, J = 6.2 Hz, 1H), 7.62-7.55 (m, 3H), 7.49 (t, J= 8.84 Hz, 1H).

2-(3-chlorophenyl)quinazolin-4(3H)-one (5ka).^{12,13} Eluent: petroleum ether/ethyl acetate (3:1): (181 mg, 71%), White solid; M.p. 295-296 °C. ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.62 (s, 1H), 8.23 (s, 1H), 8.15 (t, J = 8.40 Hz, 2H), 7.86 (t, J = 8.40 Hz, 1H), 7.77 (d, J = 7.60 Hz, 1H), 7.66 (d, J = 7.60 Hz, 1H), 7.61-7.53 (m, 2H).

2-(4-chlorophenyl)quinazolin-4(3H)-one (**5la**).^{10,12} Eluent: petroleum ether/ethyl acetate (3:1): (179 mg, 70%), White solid; M.p: 299-300 °C. ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) =12.73 (s, 1H), 8.30 (d, J = 8.56 Hz, 2H), 8.26 (d, J = 9.24 Hz, 1H), 7.95 (t, J = 7.96 Hz, 1H), 7.85 (d, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.85 (d, J = 7.48 Hz, 1H), 7.73 (d, J = 8.36 Hz, 2H), 7.64 (t, J = 7.48 Hz, 1H), 7.85 (t, J =

7.52 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) =162.7, 149.1, 146.3, 136.8, 135.2, 132.0, 132.7, 130.1, 129.2, 128.0, 127.3, 126.4, 121.5.

2-(2-bromophenyl)quinazolin-4(3H)-one (5ma).¹¹ Eluent: petroleum ether/ethyl

acetate (3:1): (207 mg, 69%), White solid; M.p:185 °C. ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.67 (s, 1H), 8.20 (d, J = 8.8

Hz, 1H), 7.87 (t, J = 7.28 Hz, 1H), 7.78 (d, J = 7.28 Hz, 1H), 7.73 (d, J = 8.08 Hz, 1H), 7.66 (d, J = 8.08 Hz, 1H), 7.61-7.55 (m, 2H), 7.53-7.47 (m, 1H).

2-(3-bromophenyl)quinazolin-4(3H)-one (5na).¹² Eluent: petroleum ether/ethyl

acetate (3:1): (210mg, 70%), White solid; M.p. 295-296 °C. ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.63 (s, 1H), 8.33 (s, 1H), 8.15 (d, J = 8.01 Hz, 2H), 7.85 (t, J = 7.28 Hz, 1H), 7.77 (t, J

= 7.32 Hz, 2H),), 7.56-7.49 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) =162.6, 151.4, 148.9, 135.4, 135.2, 134.5, 131.3, 130.9, 128.1, 127.4, 127.3, 126.3, 122.4, 121.6.

2-(4-bromophenyl)quinazolin-4(3H)-one (50a).^{5,11,12} Eluent: petroleum ether/ethyl

acetate (3:1): (225 mg, 75%), White solid; M.p>300 °C.¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.62 (s, 1H), 8.17-8.11 (m, 3H), 7.85 (t, J = 7.92 Hz, 1H), 7.76 (t, J=8.60 Hz, 3H), 7.54 (t, J=7.96 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) =162.6,

151.5, 147.9, 135.2, 132.1, 130.3, 129.6, 128.0, 127.3, 126.3, 125.7, 121.5.

7.64 Hz, 1H). ¹³C NMR (75 MHz, DMSO- d_6): δ (ppm) = 162.6, 151.7, 148.9, 137.1, 135.2, 131.8, 129.2, 128.2, 127.6, 126.4, 126.0 (q, *J* = 4.0Hz), 121.7.

2-(thiophen-2-yl)quinazolin-4(3H)-one (5qa).^{10,12} Eluent: petroleum ether/ethyl

acetate (3:1): (155 mg, 68%), Yellow solid; M.p: 270-271 °C. ¹H NMR (500 MHz, DMSO- d_6): δ (ppm) = 12.64 (s, 1H), 8.22 (d, J = 4.20 Hz, 1H), 8.11 (dd, J = 2.0, 8.10 Hz, 1H), 7.86 (d, J = 5.10 Hz, 1H), 7.79 (td, J = 1.65, 8.00 Hz 1H), 7.64 (d, J = 8.00 Hz, 1H), 7.48 (t, J = 4.85 Hz, 1H), 7.23 (t, J = 4.20 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) =162.3, 149.1, 148.3, 137.8, 135.2, 132.6, 129.9, 129.0, 127.4, 126.8, 126.5, 121.3.

2-(pyridin-2-yl)quinazolin-4(3H)-one (5ra).⁶ Eluent: petroleum ether/ethyl acetate (3:1): (140 mg, 63%), Yellow solid; ¹H NMR (500MHz, DMSO d_6): δ (ppm) = 11.80 (s, 1H), 8.74 (d, J = 3.75 Hz, 1H), 8.43 (d, J =

 $\begin{bmatrix} & & & \\ & & & \\ & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline &$

2-butylquinazolin-4(3H)-one (5sa).⁶ Eluent: petroleum ether/ethyl acetate (3:1): (46

mg, 23%), White solid; Mp: 109 ^OC. ¹H NMR (400 MHz, DMSO d_6): δ (ppm) = 12.18 (s, 1H), 8.07 (d, J = 8.60 Hz, 1H), 7.76 (t, J = 7.28 Hz, 1H), 7.58 (d, J = 8.6 Hz, 1H), 7.44 (t, J = 7.96 Hz,

1H), 2.58 (t, J = 7.64 Hz, 2H), 1.72-1.65 (m, 2H), 1.35-1.30 (m, 2H), 0.89(t, J = 6.08 Hz, 3H).

8-methyl-2-phenylquinazolin-4(3H)-one (5ab).⁸ Eluent: petroleum ether/ethyl acetate

(3:1): (191 mg, 81%), White solid; M.p: 248-249 °C ;¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.53 (s, 1H), 8.22 (d, J = 7.56 Hz, 2H), 7.99 (d, J = 7.56 Hz, 1H), 7.69 (d, J = 6.80 Hz, 1H), 7.59-7.54 (m, 3H), 7.39 (t, J =9.76 Hz, 1H), 2.63 (s, 3H).¹³C NMR (100 MHz,

DMSO- d_6): δ (ppm) = 163.0, 151.5, 147.6, 136.1, 135.4, 133.4, 131.8, 129.1, 128.2, 126.5, 123.9, 121.3, 17.6.

8-bromo-2-phenylquinazolin-4(3H)-one (5ac).¹³ Eluent: petroleum ether/ethyl acetate

(3:1): (225 mg,75%), White solid; M.p: 219-220 °C. ¹H NMR (500 MHz, DMSO- d_6): δ (ppm) = 12.75 (s, 1H), 8.25 (d, J = 7.80 Hz, 2H), 8.14 (d, J = 7.15 Hz, 2H), 7.63-7.56 (m, 3H), 7.41 (t, J = 8.30

Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) = 162.4, 153.4, 146.6, 138.5, 132.9, 132.3, 129.2, 128.4, 127.8, 127.2, 126.2, 123.1, 122.7.

6-methyl-2-phenylquinazolin-4(3H)-one (5ad).^{10,5} Eluent: petroleum ether/ethyl

acetate (3:1): (195 mg, 83%), White solid; Mp: 264-265 °C. ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.47 (s, 1H), 8.16 (d, J = 6.92 Hz, 2H), 7.95 (s, 1H), 7.64 (s, 2H), 7.54 (d, J = 5.96 Hz,

3H), 2.45 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) = 162.6, 152.0, 147.2, 136.8, 136.4, 133.2, 131.7, 129.1, 128.1, 127.9, 125.7, 121.2, 21.3.

6,7,8-trimethoxy-2-phenylquinazolin-4(3H)-one (5ae).¹³ Eluent: petroleum ether/ethyl acetate (3:1): (234 mg, 85%) ,White solid; M.p: 272-273 °C. ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = 12.51 (s, 1H), 8.19 (dd, J = 2.44, 4.96 Hz, 2H), 7.56 (d, J = 6.60 Hz, 3H), 7.38 (s, 1H), 4.07(s, 3H), 3.92 (s, 3H), 3.89 (s, 3H). ¹³C

NMR (100 MHz, DMSO- d_6): δ (ppm) = 162.2, 152.7, 150.1, 148.4, 147.7, 138.9, 133.4, 131.6, 129.1, 127.9, 117.6, 101.6, 62.6, 61.4, 56.4.

8-bromo-6-methyl-2-phenylquinazolin-4(3H)-one(5af).¹³ Eluent: petroleum $H_{3}C \rightarrow H_{N}H \rightarrow H_{3}C \rightarrow H_{N}H$ ether/ethyl acetate (3:1): (267 mg, 82%), White solid; M.p:>300 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) =12.68 (s, 1H), 8.23 (d, *J* = 8.08 Hz, 2H), 8.01 (s, 1H), 7.94 (s, 1H), 7.60-7.54 (m, 3H), 2.44 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) = 162.3, 152.5, 144.5, 139.4, 138.0, 132.9, 132.1, 129.1, 128.3, 125.7, 122.7, 122.4, 20.9.

8-bromo-2-(4-methylphenyl)-6-methylquinazolin-4(3H)-one(5kf).¹³ Eluent: $\downarrow_{H_3C} \rightarrow_{NH} \rightarrow_{CH_3}$ petroleum ether/ethyl acetate (3:1): (186 mg, 75%), White solid; M.p:>300 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) = 12.60 (s, 1H), 8.15 (d, *J* = 8.08 Hz, 2H), 8.00 (s, 1H), 7.93 (s, 1H), 7.37 (d, *J* = 8.08 Hz, 2H), 2.43(s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) = 162.3, 152.4, 144.6, 142.3, 139.4, 137.8, 130.1, 129.7, 128.2, 125.7, 122.6, 122.3, 21.5, 20.9.

2-phenylbenzo[g]quinazolin-4(3H)-one(5ag).¹³ Eluent: petroleum ether/ethyl acetate

(3:1): (217m mg, 76%), White solid; ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) = 12.37 (s, 1H), 8.87 (s, 1H), 8.32 (s, 1H), 8.22 (t, *J* = 6.72 Hz, 3H), 8.12 (d, *J* = 8.04 Hz, 1H), 7.67 (t, *J* =

6.92 Hz, 1H), 7.59 (t, J = 7.60 Hz, 4H). ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) = 163.3, 150.5, 144.8, 136.7, 135.5, 131.8, 131.4, 129.8, 129.1, 128.2, 127.8, 126.8, 125.4, 120.7.

Copies of ¹H and ¹³C NMR spectra:

Figure S12. ¹H NMR spectrum of compound 5aa (400 MHz, DMSO-*d*₆).

Figure S13. ¹³C NMR spectrum of compound 5aa (100 MHz, DMSO- d_6).

Figure S14. ¹H NMR spectrum of compound **5ba** (400 MHz, DMSO-*d*₆).

Figure S15. ¹³C NMR spectrum of compound 5ba (100 MHz, DMSO-*d*₆).

Figure S16. ¹H NMR spectrum of compound **5ca** (500 MHz, DMSO- d_6).

Figure S17. ¹³C NMR spectrum of compound 5ca (100 MHz, DMSO- d_6).

Figure 18. ¹H NMR spectrum of compound 5da (500 MHz, DMSO-*d*₆).

Figure S19. ¹³C NMR spectrum of compound 5da (125 MHz, DMSO- d_6).

Figure S20. ¹H NMR spectrum of compound 5ea (400 MHz, DMSO- d_6).

Figure S21. ¹³C NMR spectrum of compound 5ea (100 MHz, DMSO- d_6).

Figure S22. ¹H NMR spectrum of compound 5fa (500 MHz, DMSO- d_6).

Figure S23. ¹H NMR spectrum of compound 5ga (400 MHz, CDCl₃).

Figure S24. ¹³C NMR spectrum of compound 5ga (100 MHz, CDCl₃).

Figure S25. ¹H NMR spectrum of compound 5ha (400 MHz, DMSO-*d*₆).

Figure S26. ¹³C NMR spectrum of compound 5ha (100 MHz, DMSO- d_6).

Figure S28. ¹³C NMR spectrum of compound 5ia (100 MHz, DMSO-*d*₆).

Figure S29. ¹H NMR spectrum of compound 5ja (400 MHz, DMSO- d_6).

Figure S30. ¹H NMR spectrum of compound 5ka (400 MHz, DMSO- d_6).

Figure S31. ¹H NMR spectrum of compound **5la** (400 MHz, DMSO-*d*₆).

Figure S32.¹³C NMR spectrum of compound 5la (100 MHz, DMSO-*d*₆).

Figure S33. ¹H NMR spectrum of compound **5ma** (400 MHz, DMSO-*d*₆).

Figure S34. ¹H NMR spectrum of compound **5na** (400 MHz, DMSO-*d*₆).

Figure S35. ¹³C NMR spectrum of compound 5na (100 MHz, DMSO- d_6).

Figure S36. ¹H NMR spectrum of compound 50a (400 MHz, DMSO-*d*₆).

Figure S37. ¹³C NMR spectrum of compound 50a (100 MHz, DMSO- d_6).

Figure S38. ¹H NMR spectrum of compound **5pa** (400 MHz, DMSO-*d*₆).

Figure S39. ¹³C NMR spectrum of compound 5pa (100 MHz, DMSO- d_6).

Figure S40. ¹H NMR spectrum of compound **5qa** (500 MHz, DMSO-*d*₆).

Figure S41. ¹³C NMR spectrum of compound 5qa (100 MHz, DMSO-*d*₆).

Figure S42. ¹H NMR spectrum of compound **5ra** (500 MHz, DMSO-*d*₆).

Figure S43. ¹H NMR spectrum of compound 5sa (400 MHz, DMSO- d_6).

Figure S44. ¹H NMR spectrum of compound **5ab** (400 MHz, DMSO-*d*₆).

Figure S45. ¹³C NMR spectrum of compound 5ab (100 MHz, DMSO-*d*₆).

Figure S46. ¹H NMR spectrum of compound **5ac** (500 MHz, DMSO-*d*₆).

Figure S47.¹³C NMR spectrum of compound 5ac (100 MHz, DMSO-*d*₆).

Figure S48. ¹H NMR spectrum of compound 5ad (400 MHz, DMSO-*d*₆).

Figure S49. ¹³C NMR spectrum of compound 5ad (100 MHz, DMSO-*d*₆).

Figure S50. ¹H NMR spectrum of compound 5ae (400 MHz, DMSO- d_6).

Figure S51. ¹³C NMR spectrum of compound 5ae (100 MHz, DMSO-*d*₆).

Figure S52. ¹H NMR spectrum of compound **5af** (400 MHz, DMSO-*d*₆).

Figure S53. ¹³C NMR spectrum of compound 5af (100 MHz, DMSO- d_6).

Figure S54. ¹H NMR spectrum of compound **5kf** (400 MHz, DMSO-*d*₆).

Figure S55. ¹³C NMR spectrum of compound 5kf (100 MHz, DMSO-*d*₆).

Figure S56. ¹H NMR spectrum of compound **5ag** (400 MHz, DMSO-*d*₆).

Figure S57.¹³C NMR spectrum of compound 5ag (100 MHz, DMSO-*d*₆).

Figure S58. ¹H NMR spectrum of compound reaction mixture of cyclobutanol oxidation using **1b** as the catalyst.

Со	8.048	6.522	8.305
Cl	7.446	8.647	8.726
Cl	9.622	6.147	6.731
Cl	3.387	9.193	2.986
Ν	7.382	4.699	8.878
Ν	6.229	5.862	6.943
Ν	5.783	4.697	7.137
Ν	9.117	6.176	10.204
С	6.462	4.023	8.201
С	7.984	4.102	9.929
С	5.511	6.608	5.967

Table S3. DFT optimized coordinates for 1b.

С	8.915	4.923	10.67
С	7.684	2.807	10.339
С	6.095	2.725	8.533
Н	5.442	2.279	8.045
С	9.515	4.406	11.829
С	6.716	2.112	9.596
Н	6.496	1.238	9.823
С	6.058	7.824	5.590
Н	6.867	8.102	5.956
С	4.286	6.198	5.440
Н	3.913	5.386	5.697
С	9.235	3.062	12.208
Н	9.657	2.702	12.955
С	4.203	8.199	4.160
С	10.326	5.293	12.567
Н	10.744	5.008	13.349
С	8.364	2.294	11.502
Н	8.203	1.420	11.775
С	3.637	7.007	4.539
Н	2.816	6.748	4.187
C	5.405	8.625	4.670
Н	5.772	9.437	4.403
С	10.488	6.560	12.132
Н	11.002	7.157	12.625
С	9.883	6.982	10.932
Н	10.023	7.854	10.640

Table S4. DFT optimized coordinates for 2.

Co	1.743	1.526	3.872
Cl	1.996	2.727	1.977
Cl	-0.288	0.603	4.274
Ν	1.752	3.015	5.578
Ν	3.275	0.935	5.077
Ν	2.825	-0.242	2.936
Ν	3.908	-0.645	3.460
Ν	0.286	4.481	4.594
Ν	-0.205	5.629	4.717
С	3.386	1.464	6.319
С	4.100	-0.067	4.732
С	2.549	2.598	6.595
С	4.282	0.972	7.277
С	3.476	2.647	8.847
Н	3.494	3.027	9.718
С	4.270	1.577	8.579
Н	4.827	1.224	9.263
С	2.615	3.218	7.860
С	1.040	4.118	5.770
С	1.815	4.373	8.033
Н	1.809	4.828	8.866
С	-0.898	6.084	3.549
С	5.079	-0.571	5.598
Н	5.680	-1.248	5.309
С	1.046	4.835	6.988
Н	0.525	5.625	7.085

С	5.155	-0.070	6.872	
Н	5.792	-0.421	7.484	
С	2.550	-0.830	1.653	
С	1.217	-0.927	1.282	
Н	0.539	-0.575	1.846	
С	-1.615	7.254	3.726	
Н	-1.635	7.679	4.575	
С	0.878	-1.539	0.080	
Н	-0.035	-1.644	-0.160	
С	3.556	-1.304	0.820	
Н	4.467	-1.237	1.081	
С	-0.829	5.446	2.302	
Н	-0.329	4.647	2.191	
С	-1.513	6.015	1.236	
Н	-1.475	5.608	0.378	
С	-2.304	7.802	2.657	
Н	-2.807	8.600	2.771	
С	3.210	-1.881	-0.401	
Н	3.889	-2.196	-0.986	
С	-2.254	7.181	1.422	
Н	-2.731	7.554	0.690	
С	1.874	-1.994	-0.766	
Н	1.644	-2.387	-1.600	

Co	8.048	6.522	8.305
Cl	7.446	8.647	8.726
Cl	9.622	6.147	6.731
Cl	3.387	9.193	2.986
Ν	7.382	4.699	8.878
Ν	6.229	5.862	6.943
Ν	5.783	4.697	7.137
Ν	9.117	6.176	10.204
С	6.462	4.023	8.201
С	7.984	4.102	9.929
С	5.511	6.608	5.967
С	8.915	4.923	10.67
С	7.684	2.807	10.339
С	6.095	2.725	8.533
Н	5.442	2.279	8.045
С	9.515	4.406	11.829
С	6.716	2.112	9.596
Н	6.496	1.238	9.823
С	6.058	7.824	5.590
Н	6.867	8.102	5.956
С	4.286	6.198	5.440
Н	3.913	5.386	5.697
С	9.235	3.062	12.208
Н	9.657	2.702	12.955

 Table S5. DFT optimized coordinates for 1b with HOMO-LUMO mixing.

С	4.203	8.199	4.160
С	10.326	5.293	12.567
Н	10.744	5.008	13.349
С	8.364	2.294	11.502
Н	8.203	1.420	11.775
С	3.637	7.007	4.539
Н	2.816	6.748	4.187
С	5.405	8.625	4.670
Н	5.772	9.437	4.403
С	10.488	6.560	12.132
Н	11.002	7.157	12.625
С	9.883	6.982	10.932
Н	10.023	7.854	10.64

 Table S6. DFT optimized coordinates for 2 with HOMO-LUMO mixing.

Co	1.743	1.526	3.872
Cl	1.996	2.727	1.977
Cl	-0.288	0.603	4.274
Ν	1.752	3.015	5.578
Ν	3.275	0.935	5.077
Ν	2.825	-0.242	2.936
Ν	3.908	-0.645	3.460
Ν	0.286	4.481	4.594
Ν	-0.205	5.629	4.717

С	3.386	1.464	6.319
С	4.100	-0.067	4.732
С	2.549	2.598	6.595
С	4.282	0.972	7.277
С	3.476	2.647	8.847
Н	3.494	3.027	9.718
С	4.270	1.577	8.579
Н	4.827	1.224	9.263
С	2.615	3.218	7.860
С	1.040	4.118	5.770
С	1.815	4.373	8.033
Н	1.809	4.828	8.866
С	-0.898	6.084	3.549
С	5.079	-0.571	5.598
Н	5.680	-1.248	5.309
С	1.046	4.835	6.988
Н	0.525	5.625	7.085
С	5.155	-0.07	6.872
Н	5.792	-0.421	7.484
С	2.550	-0.830	1.653
С	1.217	-0.927	1.282
Н	0.539	-0.575	1.846
С	-1.615	7.254	3.726
Н	-1.635	7.679	4.575
С	0.878	-1.539	0.080

Н	-0.035	-1.644	-0.160
С	3.556	-1.304	0.820
Н	4.467	-1.237	1.081
С	-0.829	5.446	2.302
Н	-0.329	4.647	2.191
С	-1.513	6.015	1.236
Н	-1.475	5.608	0.378
С	-2.304	7.802	2.657
Н	-2.807	8.600	2.771
С	3.210	-1.881	-0.401
Н	3.889	-2.196	-0.986
С	-2.254	7.181	1.422
Н	-2.731	7.554	0.690
С	1.874	-1.994	-0.766
Н	1.644	-2.387	-1.600

References:

1. Bruker SAINT-plus; Bruker AXS Inc.: Madison, Wisconsin, USA, 2007.

2. G. M. Sheldrick, SHELXS–97, a Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, **1997**.

3. G. M. Sheldrick, SHELXL–97, a Program for Crystal Structure Refinement; University of Göttingen, Göttingen, Germany, **1997**.

4. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.

5. F. C. Jia, Z. W. Zhou, C. Xu, Y. D. Wu, A. X. Wu, Org. Lett. 2016, 18, 2942–2945.

Z. Zhang, M. Wang, C. Zhang, Z. Zhang, J. Lu, F. Wang, *Chem. Commun.* 2015, 51, 9205-9207.

- 7. X. Liu, H. Fu, Y. Jiang, Y. A. Zhao, Angew. Chem. Int. Ed. 2009, 48, 348-351.
- 8. B. Ma, Y. Wang, J. Peng, Q. Zhu, J. Org. Chem. 2011, 76, 6362-6366.
- 9. X. Jiang, T. Tang, J. M. Wang, Z. Chen, Y. M. Zhu, S. J. Ji, *J. Org. Chem.* 2014, **79**, 5082–5087.
- 10. X. Yang, G. Cheng, J. Shen, C. Kuai, X. Cui, Org. Chem. Front. 2015, 2, 366-368.
- 11. S. Mohammed, R. A. Vishwakarma, S. B. Bharate, J. Org. Chem. 2015, 80, 6915–6921.
- 12. J. Zhou, J. Fang, J. Org. Chem. 2011, 76, 7730-7736.
- 13. S. Parua, S. Das, R. Sikari, S. Sinha, N. D. Paul, J. Org. Chem. 2017, 82, 7165–7175.