Electronic Supplementary Information

Rapid Fabrication of Oxygen Defective α-Fe₂O₃(110) for Enhanced Photoelectrochemical Activities

Mohamad Firdaus Mohamad Noh^a*, Habib Ullah^{b,*}, Nurul Affiqah Arzaee^a, Azhar Ab Halim^{a,c}, Muhammad Amir Faizal Abdul Rahim^{a,c}, Nurul Aida Mohamed^a, Javad Safaei^d, Siti Nur Farhana Mohd Nasir^a, Guoxiu Wang^d, Mohd Asri Mat Teridi^{a,*}

 ^aSolar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
^bRenewable Energy Group, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, United Kingdom.
^cSchool of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
^dCentre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, NSW, 2007 Australia.

*Corresponding author: fir.noh@gmail.com (Mohamad Firdaus Mohamad Noh) hu203@exeter.ac.uk (Habib Ullah) asri@ukm.edu.my (Mohd Asri Mat Teridi)

Figure S1. XPS survey spectra of $Fe_2O_3(110)$ and $O_{V}Fe_2O_3(110)$.

Figure S2. TEM images of (a) $Fe_2O_3(110)$ and (b) $O_V_Fe_2O_3(110)$. The circles show the presence of oxygen vacancies in crystal lattice.

Crystallite size calculation

The following Scherrer equation was used for the calculation of crystallite size, D:

$$D = \frac{K\lambda}{\beta\cos\theta}$$
(Eq. S1)

where K is the shape factor with a value of 0.9, λ is the wavelength of X-ray, β is the full-width at half maximum (FWHM) of the XRD peak and θ is the Bragg angle.

Transient time calculation

Figure S3. Ln D vs. time graph for the determination of transient time of $Fe_2O_3(110)$ and O_v $Fe_2O_3(110)$ samples.

Figure S2 was derived from Figure 5(b) using the following equations:

$D = \frac{I_t - I_f}{T_t}$	
$I_i - I_f$	(Eq. S2)
$\tau = -t \ln D$	(Eq. S3)

where τ is the transient time constant at which ln D = -1; I_t is the current at time t; I_i and I_f are the initial current (i.e. maximum current right after light is on) and final current (i.e. minimum current right before light is off), respectively.

Figure S4. Current-time (*I-t*) graph of photoelectrochemical cells for O_v _Fe₂ $O_3(110)$ photoanode measured at 1.2 $V_{Ag/AgCl}$ bias voltage under light illumination.

Figure S5. Photoelectrochemical performance of four different samples of (a) $Fe_2O_3(110)$ and (b) $O_{v_2}Fe_2O_3(110)$ measured from front under light illumination.

Figure S6. AFM images of $Fe_2O_3(110)$ film deposited via AACVD for (a) 10 min, (b) 20 min, (c) 40 min and (d) 60 min.

Figure S7. FESEM images of $Fe_2O_3(110)$ deposited for (a) 10 min and (b) 40 min. Prolonging the deposition time converts the structure of α -Fe₂O₃ film from nanoflakes to nanoflowers.