Supplementary Information

Fig. S1. High-resolution spectra of XRD around (002) peak.

Fig. S2. High-resolution (a) O 1s and (b) P 2p of the PCNNS/AP/NCDs-10% composite.

Fig. S3. Photocatalytic activities of PCNNS and PCNNS/NCDs-x% for TC degradation under visible light irradiation.

Fig. S4. Pseudo-first-order for the photocatalytic degradation of TC with as-prepared samples.

Fig. S5. Influence of (a) catalyst dosages, (b) TC concentration and (c) pH on the photocatalytic degradation towards TC. Conditions: t = 25 °C, pH = 7, [TC] = 30 mg/L, and [catalyst] = 0.1 g/L. The experiments of different effect factors were conducted by changing one of the key effect factors while keeping the other two parameters constant except for the temperature.

Fig. S6. (a) XRD and (b) FTIR patterns of the PCNNS/AP/NCDs-10% composite before and after the reaction.

Fig. S7. Photocatalytic activities of PCNNS/AP/NCDs-10% for TC degradation with TW and LW under sunlight.

semiconductor	Eg	Х	$E_{\rm VB}$	E _{CB}
PCNNS	2.58	4.72	1.51	-1.07
Ag ₃ PO ₄	2.30	5.96	2.61	0.31

Table S1. VB and CB potentials of PCNNS and Ag_3PO_4 .

Table S2.	. The possible	intermediates	of TC	degradation	under	visible	light	irradiation.

Product No.	m/z	molecular formula	molecular structure
A	455	$C_{22}H_{24}N_2O_8$	H_3C CH_3 H_3C OH OH OH OH OH OH OH OH
I 1	475	$C_{22}H_{24}N_2O_{10}$	H_3C OH OH OH OH OH OH OH OH
I ₂	438	$C_{20}H_{24}N_2O_9$	$H_{3}C \rightarrow OH \rightarrow H_{2} \rightarrow OH \rightarrow O$
I ₃	262	$C_{15}H_{20}O_4$	OH OH OH m/z=262
I_4	149	$C_9H_{10}O_2$	ОН m/z=149
Π 1	461	$C_{22}H_{24}N_2O_9$	H_3C CH_3 H_3C OH OH OH OH OH OH OH OH

Ш5	228	$C_{14}H_{12}O_3$	OH OH m/z=228
----	-----	-------------------	------------------