Degradation of Azo Dyes under Visible Light with Stable MOF

Based on Tetrastyrene Imidazole Ligand†

Xiao Zhang^a, Lu-Jie Wang^a, Zhen Han^a, Xing Meng^a, Hai-Ning Wang^a, Zi-Yan Zhou^a* and Zhong-Min Su^{b,c*}

 a. College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, People's Republic of China

 b. School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China

c. Jilin Provincial Science and Technology Innovation Center of Optical Materials and

Chemistry, Changchun, 130022, China

Fig. S1 PXRD of MOF before and after reaction and heated in boiling water for 3 h

It is found that the peak can be basically aligned, but the strength has some changes, because after degradation, some dye molecules adsorb on the crystal, resulting in the decrease of crystallinity of the crystal.

Fig. S2 FT-IR of MOF before and after reaction and heated in boiling water for 3 h

Fig. S3 PXRD and FT-IRof MOF before and after reaction with sacrificial agent

Fig. S4 Dark adsorption of all dyes at 293.15 K

Table S1 Design of 3-factor and 3-level orthogonal test of MO

		Factors	
Levels	pН	MOFs/mg	Initial MO/10 ⁻⁵ (mol/L)
Leveis	(A)	(B)	(C)
1	2.9	10	1
2	6.8	20	2
3	10.9	30	3

|--|

Entw	pН	MOFs/mg	Initial MO/10 ⁻⁵ (mol/L)	150min
Entry	(A)	(B)	(C)	Degradation/%
1	1(2.9)	1(10)	1(1)	36.93
2	1(2.9)	2(20)	2(2)	87.27
3	1(2.9)	3(30)	3(3)	83.43
4	2(6.8)	1(10)	2(2)	96.48
5	2(6.8)	2(20)	3(3)	91.88
6	2(6.8)	3(30)	1(1)	77.66
7	3(10.9)	1(10)	3(3)	37.99
8	3(10.9)	2(20)	1(1)	60.85
9	3(10.9)	3(30)	2(2)	74.65

Table S3 Optimization results of MO

Entw	рН	MOFs/mg	Initial MO/10 ⁻⁵ (mol/L)
	(A)	(B)	(C)
K1	207.63	171.40	175.44
K2	266.02	240.00	258.40
K3	173.49	235.74	213.30

$\overline{K_1}$	69.21	57.13	58.48
$\overline{K_2}$	88.67	80.00	86.13
$\overline{K_3}$	57.83	78.58	71.10
R	30.84	22.87	27.65

Fig. S5 Ki vs the levels of the factors for MO

Table S4	Design	of 3-factor	and 3-level	orthogonal	test of CR
	0			0	

			Factors	
Levels		pН	MOFs/mg	Initial CR/10 ⁻⁵ (mol/L)
		(A)	(B)	(C)
1		2.9	10	1
2		6.8	15	2
3		10.9	20	3
Table S	5 Orthogo	onal experimen	tal results of CR	
Entw	pН	MOFs/mg	Initial CR/10 ⁻⁵ (mol/L)	250min
Entry	(A)	(B)	(C)	Degradation/%
1	1(2.9)	1(10)	1(1)	50.76
2	1(2.9)	2(15)	2(2)	43.74
3	1(2.9)	3(20)	3(3)	46.57
4	2(6.8)	1(10)	2(2)	40.81
5	2(6.8)	2(15)	3(3)	42.87
6	2(6.8)	3(20)	1(1)	38.46
7	3(10.9)	1(10)	3(3)	44.37
8	3(10.9)	2(15)	1(1)	35.16
9	3(10.9)	3(20)	2(2)	38.63

Table S6 Optimization results of CR

Entry	рН (А)	MOFs/mg (B)	Initial CR/10 ⁻⁵ (mol/L) (C)
K1	141.07	135.94	124.38
K2	122.14	121.77	123.18

Fig. S6 \overline{Ki} vs the levels of the factors for CR

 Table S7 Design of 3-factor and 3-level orthogonal test of CBR

		Factors	
Lavala	pН	MOFs/mg	Initial CBR/10 ⁻⁵ (mol/L)
Levels	(A)	(B)	(C)
1	2.9	10	1
2	6.8	20	2
3	10.9	30	3

Entry	pH (A)	MOFs/mg (B)	Initial CBR/10 ⁻⁵ (mol/L) (C)	300min Degradation/%
1	1(2.9)	1(10)	1(1)	84.15
2	1(2.9)	2(20)	2(2)	77.74
3	1(2.9)	3(30)	3(3)	75.69
4	2(6.8)	1(10)	2(2)	89.63
5	2(6.8)	2(20)	3(3)	83.54
6	2(6.8)	3(30)	1(1)	90.73
7	3(10.9)	1(10)	3(3)	79.48
8	3(10.9)	2(20)	1(1)	83.75
9	3(10.9)	3(30)	2(2)	76.92

Table S8 Orthogonal experimental results of CBR

Entry	pН	MOFs/mg	Initial CBR/10 ⁻⁵ (mol/L)
	-	0	· · · · · · · · · · · · · · · · · · ·

	(A)	(B)	(C)	
K1	237.58	253.26	258.63	_
K2	263.90	245.03	244.29	
K3	240.15	243.34	238.71	
$\overline{K_1}$	79.19	84.42	86.21	
$\overline{K_2}$	87.97	81.68	81.43	
$\overline{K_3}$	80.05	81.11	79.57	
R	8.78	3.31	6.64	

Fig. S7 $\overline{\text{Ki}}$ vs the levels of the factors for CBR

Dye	Temperature(K)	K_{f} (min ⁻¹)	R ²	Ea(KJ/mol)	\mathbf{R}^2 of \mathbf{E}_a
МО	293.15	0.0110	0.9942	23.49	0.9941
	303.15	0.0149	0.9910		
	308.15	0.0170	0.9919		
	313.15	0.0199	0.9927		
	318.15	0.0238	0.9936		
CR	293.15	0.0033	0.9871	52.68	0.9851
	303.15	0.0060	0.9810		
	308.15	0.0098	0.9959		
	313.15	0.0142	0.9958		
	318.15	0.0170	0.9887		
CBR	293.15	0.0097	0.9967	15.19	0.9932
	303.15	0.0115	0.9974		
	308.15	0.0126	0.9984		
	313.15	0.0146	0.9978		

Table S10 The reaction rate constants of degrade dyes in different temperature

Fig. S8Cycling runs for the photocatalytic degradation of MO (a), CR (b), CBR (c), over catalyst MOF under visible light irradiation. (Reaction conditions: [MO] = 2.0×10⁻⁵ M, pH =6.8, [MOF] = 20 mg, T = 293.15 K; [CR] = 3.0×10⁻⁵ M, pH =2.9, [MOF] = 10 mg, T = 293.15 K; [CBR] = 1.0×10⁻⁵ M, pH =6.8, [MOF] = 10 mg, T

=293.15 K.

Fig. S9 Cycling runs for the photocatalytic degradation rate of MO (a), CR (b), CBR (c), over catalyst 1 under natural light irradiation at room temperature. (d) The degradation rate after soaking (Reaction conditions: [MO] = 2.0×10⁻⁵ M, pH = 6.8, [MOF] = 20 mg, T = 293.15 K; [CR] = 3.0×10⁻⁵ M, pH = 2.9, [MOF] = 10 mg, T = 293.15 K; [CBR] = 1.0×10⁻⁵ M, pH = 6.8, [MOF] = 10 mg, T = 293.15 K.

Fig. S10 Dye solutions after different degradation times under optimal conditions.(Reaction conditions: $[MO] = 2.0 \times 10^{-5} \text{ M}$, pH = 6.8, [MOF] = 20 mg, T = 293.15 K; [CR] = 3.0×10⁻⁵ M, pH = 2.9, [MOF] = 10 mg, T = 293.15 K; [CBR] = 1.0×10^{-5} M, pH = 6.8, [MOF] = 10 mg, T = 293.15 K)

X-ray Crystallographic Study^[1-2]

Single-crystal X-ray diffraction data recorded on a Bruker Smart Apex II CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) by the ω and θ scan mode at room temperature. The structure was solved by the direct method and refined by the full matrix least-squares method on F^2 using the SHELXTL 2014 crystallographic software package. Crystallographic data for the structures reported in this paper have been deposited in the Cambridge Crystallographic Data Center with CCDC reference number 1909962 for MOF.

References

- 1. G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3-8.
- 2. Isabel Usón and G. M. Sheldrick, Acta Crystallogr. D, 2018, 74, 106-116.