Supporting Information

Facile Synthesis of Porous Co₃O₄ Nanoflakes as an Interlayer for High Performance Lithium-Sulfur Batteries

Xiao-Xiao Zheng ^{a,b}, Shi-Xi Zhao^{a*}, Jin-Lin Yang^{a,b}, Yi-Ming Lu^{a,b} Qi-Long Wu^{a,b} and Xiang-Tian Zeng^{a,b}

^aShenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

^bSchool of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China

*Corresponding author: Email: <u>zhaosx@sz.tsinghua.edu.cn</u> (S.X.Zhao);

Fig. S1 (a-b) SEM images and (c) XRD of carbon spheres.

Fig. S2 (a-b) SEM images and (c) XRD of rod-like Co₃O₄.

Fig. S3 XPS spectrum of Co₃O₄

Table S1 the relative content of Co²⁺ and Co³⁺ before and after adsorption

Fig. S4 Thermogravimetric analysis (TGA) curve of cabon black-sulfur cathode with a heating rate of 5 °C min⁻¹.

Fig. S5 Nyquist plots of Co₃O₄-super P interlayer and super P interlayer and equivalent circuit (inset).

Table S2 EIS fitting results of cells with Co₃O₄-super P interlayer and super P interlayer

Interlayer	$R_{ct}(\Omega)$	$R_s(\Omega)$
Co ₃ O ₄ -super P	19.4	6.4
Super P	26.9	2.3