Supporting information

Understanding the photophysical properties of rhenium(I) compounds coordinated to 4,7-diamine-1,10-phenanthroline: synthetic, luminescence and biological studies

Luiz D. Ramos¹, Leonardo H. de Macedo¹, Nicholas R. S. Gobo²; Kleber T. de Oliveira² Giselle Cerchiaro¹ and Karina P. Morelli Frin^{1*}

¹Federal University of ABC - UFABC, Av. dos Estados 5001, Santo Andre-SP – Brazil ²Universidade Federal de São Carlos - Rodovia Washington Luís, km 235, São Carlos-SP – Brazil. *E-mail: karina.frin@ufabc.edu.br

Figure S1: ¹H NMR spectrum of 4,7-diamine-1,10-phenanthroline in DMSO-d6 at room temperature (400 MHz).

Figure S2: ${}^{13}C{}^{1}H$ NMR spectrum of 4,7-diamine-1,10-phenanthroline in DMSO-d6: CDCl₃ at room temperature (400 MHz).

Figure S3: IR spectrum of 4,7-diamine-1,10-phenanthroline in KBr.

Figure S4: HRMS (ESI) of 4,7-diamine-1,10-phenanthroline. Calc. [M+H]⁺ 211.0978; Found: 211.0975. (Error 1,7 ppm).

Figure S5: ¹H NMR spectrum of *fac*-[ReCl(Am₂phen)(CO)₃] in CD₃CN at room temperature (500MHz).

Figure S6: FTIR spectrum of *fac*-[ReCl(Am₂phen)(CO)₃].

Figure S7: ¹H NMR spectrum of *fac*-[Re(et-isonic)(Am₂phen)(CO)₃]⁺ in CD₃CN at room temperature (500 MHz).

4

Figure S8: FTIR spectrum of *fac*-[Re(et-isonic)(Am₂phen)(CO)₃]PF₆

Figure S9: ¹H NMR spectrum of *fac*-[ReCl(et-isonic)₂(CO)₃] in CD₃CN at room temperature (300 MHz).

Figure S10: IR spectrum of *fac*-[ReCl(et-isonic)₂(CO)₃] in KBr

Compound	Proton	δ (ppm)	J (Hz)
NH ₂ 5	H1 (d)	8.41	6.1
	H4 (s)	8.27	
4	H2 (d)	8.17	
	H5 (br)		
1			
NH ₂ 5	H1 (d)	8.69	6.1
	H4 (s)	7.93	
	H2 (d)	6.94	6.1
	H5 (br)	6.39	
O C d	H1 (d)	8.84	6.1
b	Ha (dd)	8.39	5.4; 1.5
a NH ₂ 5	H4 (s)	7.88	
	Hb (dd)	7.62	5.2; 1.5
	H2 (d)	7.00	6.1
	H5 (br)	6.55	
2	Hc (q)	4.27	7.1
	Hd (t)	1.26	7.1
	Ha (dd)	8.88	6.6; 5.1
b C d CH ₃	Hb (dd)	7.87	6.6; 5.1
	Hc (q)	4.39	7.1
	Hd (t)	1.36	7.1
O CH3			

Table S1. ¹H NMR data for Am_2 phen ligand in DMSO-d6 and for *fac*-[Re(L)(Am_2 phen)(CO)₃]^{0/+} compounds in CD₃CN at room temperature.

Dond Longht	fac-[Re(L)(Am ₂ phen)(CO) ₃] ^{0/+1}		
Bond Lengit –	Cl	et-isonic	
Re-C (equatorial) (Å)	1.92	1.93	
Re-C (ancillary) (Å)	1.90	1.93	
$\text{Re-N}_{(NN)}$ (Å)	2.18	2.18	
Re-L (Å)	2.56	2.23	
$N_{(NN)}$ -Re- $N_{(NN)}$ (°)	75.55	75.42	
	fac-[Re(L)(phen)(CO) ₃] ^{0/+1}		
Bond Lengit –	Cl	et-isonic	
Re-C (equatorial) (Å)	1.92	1.93	
Re-C (ancillary) (Å)	1.91	1.93	
$\text{Re-N}_{(NN)}$ (Å)	2.18	2.19	
Re-L (Å)	2.55	2.24	
$N_{(NN)}$ -Re- $N_{(NN)}$ (°)	76.33	76.20	
Bond Lenght	fac-[ReC	Cl(et-isonic) ₂ (CO) ₃]	
Re-C (equatorial) (Å)	1.93		
Re-C (ancillary) (Å)	1.90		
Re-N (Å)	2.22		
Re-Cl (Å)	2.55		
N-Re-N (°)	85.94		

Table S2. Calculated bond lengths and angle of fac-[Re(L)(Am₂phen)(CO)₃]^{0/+1}, fac-[Re(L)(phen)(CO)₃]^{0/+1} and fac-[ReCl(et-isonic)₂(CO)₃] compounds.

Table S3. Vibrational data (v_{CO}) of *fac*-[ReCl(NN)(CO)₃], *fac*-[Re(et-isonic)(NN)(CO)₃]PF₆ and *fac*-[ReCl(et-isonic)₂(CO)₃] compounds.

Compound	Experimental (cm ⁻¹)	Calculated (cm ⁻¹)
<i>fac</i> -[ReCl(Am ₂ phen)(CO) ₃]	2010; 1903; 1850	1976.70; 1891.57; 1868.60
<i>fac</i> -[Re(et-isonic)(Am ₂ phen)(CO) ₃]PF ₆	2021; 1894	1996.23; 1913.43; 1902.32
<i>fac</i> -[ReCl(phen)(CO) ₃]	2014; 1925; 1887	1982.76; 1902.41; 1879.08
<i>fac</i> -[Re(et-isonic)(phen)(CO) ₃]PF ₆	2030; 1930; 1910	2002.86; 1924.31; 1913.34
fac-[ReCl(et-isonic) ₂ (CO) ₃]	2027; 1917; 1873	1990.95; 1914.75; 1867.16

Figure S11. Isosurface plots of frontier orbitals of *fac*-[ReCl(Am₂phen)(CO)₃].

Table S4. Calculated spectral parameters of fac-[ReCl(et-isonic)₂(CO)₃] complex in CH₃CN.

Transition	λ(nm)	Oscillator	Main Character
(contribution)	` '	strength	
$H \rightarrow L (84\%)$	393	0.0261	$MLCT_{Re \rightarrow et-isonic}$
H-1 →L+1 (82%)	388	0.0123	$MLCT_{Re \rightarrow et\text{-}isonic}$
$H-1 \rightarrow L (30\%)$	387	.0.0370	$MLCT_{Re \rightarrow et\text{-}isonic}$
$H \rightarrow L+1 (38\%)$	507		$MLCT_{Re \rightarrow et-isonic}$
$H-2 \rightarrow L (86\%)$	363	0.1287	$MLCT_{Re \rightarrow et\text{-}isonic}$
$H-2 \rightarrow L+1 (71\%)$	353	0.1664	$MLCT_{Re \rightarrow et\text{-}isonic}$
$H-5 \rightarrow L+1 (13\%)$	263	263 0.0500	LLCT
$H-2 \rightarrow L+3 (14\%)$			MLCT _{Re→et-isonic}
H-1 \rightarrow L+5 (15%)			MLCT _{Re→et-isonic}
$H \to L+5 (15\%)$			MLCT _{Re→et-isonic}
H-11 \rightarrow L (45%)			ILCT _{ethyl ester→py}
H-11 \rightarrow L+1 (22%)	232	0.1021	ILCT _{ethyl ester→py}
H-10 \rightarrow L+1 (23%)			ILCT _{ethyl ester→py}

Figure S12. Isosurface plots of frontier orbitals of fac-[ReCl(et-isonic)₂(CO)₃] that are not presented at the text.

Figure S13: Experimental (line) and theoretical (bars) UV-Vis spectra of *fac*-[ReCl(et-isonic)₂(CO)₃] in CH₃CN at room temperature.

Figure S14. Plot of emission maxima versus Hammet Constant for a) *fac*- $[ReCl(NN)(CO)_3]$ and b) *fac*- $[Re(et-isonic)(NN)(CO)_3]^+$ compounds.

Figure S15: Emission spectra of (a) fac-[ReCl(Am₂phen)(CO)₃], (b) fac-[Re(et-isonic)(Am₂phen)(CO)₃]⁺ and (c) free Am₂phen in CH₃CN at room temperature (continuous line) and in ethanol: methanol (4:1) at 77 K (dashed line).

Figure S16. Microscopy fluorescence of Re(I) complexes (50 μ mol.L⁻¹) for 15 min in SkMel-147 cell line. (1) *fac-* [ReCl(Am₂phen)(CO)₃]; (2) *fac-*[Re(et-isonic)(Am₂phen)(CO)₃]⁺.

Figure S17. Microscopy fluorescence of Re(I) complexes (50 μ mol.L⁻¹) for 15 min in SkMel-29 cell line.. (1) *fac*- [ReCl(Am₂phen)(CO)₃]; (2) *fac*-[Re(et-isonic)(Am₂phen)(CO)₃]⁺.

Figure S18: Dot plot of flow cytometry using Annexin V/FITC and PI in the MCF-7 cell line, treatment time of 24h at IC₅₀ concentration using 1% DMSO (v/v) as vehicle, at 5% CO₂ atmosphere at 37 ° C. Negative control (a); Positive control (b), *fac*-[ReCl(Am₂phen)(CO)₃] (c); *fac*-[Re(et-isonic)(Am₂phen)(CO)₃]⁺ (d).

Figure S19: Dot plot of flow cytometry using Annexin V/FITC and PI in the SkMel-147 cell line, treatment time of 24h at IC₅₀ concentration using 1% DMSO (v/v) as vehicle, at 5% CO₂ atmosphere at 37 ° C. Negative control (a); Positive control (b), *fac*-[ReCl(Am₂phen)(CO)₃] (c); *fac*-[Re(et-isonic)(Am₂phen)(CO)₃]⁺ (d).

Figure S20: Dot plot of flow cytometry using Annexin V/FITC and PI in the SkMel-29 cell line, treatment time of 24h at IC₅₀ concentration using 1% DMSO (v/v) as vehicle, at 5% CO₂ atmosphere at 37 ° C. Negative control (a); Positive control (b), *fac*-[ReCl(Am₂phen)(CO)₃] (c); *fac*-[Re(et-isonic)(Am₂phen)(CO)₃]⁺ (d).

