Electronic Supplementary Information (ESI)

Homoleptic versus heteroleptic trinuclear systems with mixed L-cysteinate and D-penicillaminate regulated by a diphosphine linker

Sasikarn Hanprasit,^a Nobuto Yoshinari,^a Daisuke Saito,^b Masako Kato,^b and Takumi Konno^{*a}

^a Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

^b Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan).

konno@chem.sci.osaka-u.ac.jp

1. Tables

complex	maximum wavelength, λ_{max}	quantum yield, Φ	Lifetime, $\tau / \mu s (A_i)^a$ and $\tau_{ave} / \mu s$
	/ nm		
1 _{Zn}	516	0.04	$\tau = 0.00488(3468), 0.123(368), 0.761(157)^{b}$
			$\tau_{\rm ave} = 0.532^{\ b}$
2 _{Zn}	525	0.05	$\tau = 0.00472(3879), 0.356(47), 6.27(36)^{c}$
			$\tau_{\rm ave} = 5.45^{\ c}$

Table S1. Luminescence properties of $\mathbf{1}_{Zn}$ and $\mathbf{2}_{Zn}$ in the solid state.

a: pre-exponential factors; b: excited at 405 nm, observed at 520 nm; c: a: excited at 405 nm, observed at 525

nm.

Table S2. Total energies of the optimized structures

Molecules	Total energy (a.u.)	Total energy (kJ mol ⁻¹)	
$[Zn{Au_2(dppm)(L-cys)_2}]$	-1980.77776390	-5200532.0	
$[Zn{Au_2(dppm)(D-pen)_2}]$	-2138.00363347	-5613328.5	
[Zn{Au ₂ (dppm)(L-cys)(D-pen)}]	-2059.38956527	-5406927.3	
$[Zn{Au_2(dppe)(L-cys)_2}]$	-2020.08998626	-5303746.3	
$[Zn{Au_2(dppe)(D-pen)_2}]$	-2177.31467572	-5716539.7	
[Zn{Au ₂ (dppe)(L-cys)(D-pen)}]	-2098.70289925	-5510144.5	

	1_{Ni}	2 _{Ni}	1 _{Zn}	2_{Zn}
Formula	$C_{33}H_{48}N_2Au_2NiO_{10}P_2S_2$	$C_{34}H_{52}N_2Au_2NiO_{11}P_2S_2$	$C_{33}H_{48}N_2Au_2ZnO_{10}P_2S_2$	$C_{34}H_{52}N_2Au_2ZnO_{11}P_2S_2$
Colour, form	Green, plate	Blue, plate	Colourless, plate	Colourless, plate
Mw	1211.43	1243.48	1218.09	1250.14
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic
Space group	$P2_{1}$	<i>P</i> 1	$P2_{1}$	P1
a/ Å	18.3452(4)	10.5688(2)	18.4269(4)	10.3527(8)
<i>b</i> / Å	12.3860(3)	15.8075(3)	12.2826(3)	15.3022(13)
c/ Å	19.8824(4)	16.1811(4)	20.0060(4)	15.8338(13)
α/°	90	106.128(8)	90	104.376(7)
β/ °	111.973(8)	99.779(7)	111.579(8)	101.422(7)
γ/°	90	104.476(7)	90	102.993(7)
V/ Å ³	4189.6(3)	2429.84(16)	4210.6(3)	2280.4(3)
Ζ	4	2	4	2
T/K	200(2)	200(2)	200(2)	100(2)
F(000)	2352	1212	2360	1216
ρ calcd / g.	1.921	1.700	1.922	1.821
cm ⁻³				
μ(Mo Kα)/	7.660	6.607	7.744	1.615
mm^{-1}				
Crystal size/	$0.05 \times 0.05 \times 0.02$	0.15×0.08×0.01	0.12×0.06×0.01	0.08×0.02×0.02
mm ³				
$R1 (I > 2\sigma(I)^{a})$	0.0647	0.0785	0.0736	0.1183
wR2 (all data) ^{b)}	0.1220	0.1862	0.1521	0.3162
GOF	1.016	1.003	1.016	0.985

 Table S3. Crystallographic data of the compounds.

^a $R_1 = \Sigma |(|Fo|-|Fc|)| / \Sigma (|Fo|).$ ^b $wR_2 = [\Sigma w (Fo^2 - Fc^2)^2 / \Sigma w (Fo^2)^2]^{1/2}.$

2. Figures

Fig. S1. ESI-TOF mass spectra (positive mode) of the *in situ*-prepared metalloligands, (a) $[Au_2(dppm)(D-pen)_2]^{2-}(L1^{dppm})$ and (b) $[Au_2(dppm)(L-cys)_2]^{2-}(L2^{dppm})$ in methanol-water (1:1). Inset: the isotope patterns of the dominant signals at m/z = 1097 and 1041 with the simulated patterns.

Fig. S2. Absorption spectra of 1_{Ni} and 2_{Ni} in methanol-water (1:1).

Fig. S3. Perspective views of (a) $[Ni(L1^{dppm})]$ and $[Ni(L2^{dppm})]$ molecules with an intermolecular NH···O hydrogen bond (dashed line) and (b) a packing structure viewed from the crystallographic *b*-axis of $\mathbf{1}_{Ni}$. Colour code: Au, pink; Ni, blue-green; S, yellow; P, orange; O, red; N, blue; and C, grey. H atoms were omitted for clarity.

Fig. S4. Simulated (red) and observed (black) powder X-ray diffraction patterns of 1_{Ni}.

Fig. S5. ESI-TOF mass spectra (positive mode) of the *in situ*-prepared metalloligands, (a) $[Au_2(dppe)(D-pen)_2]^{2-}$ (L1^{dppe}) and (b) $[Au_2(dppe)(L-cys)_2]^{2-}$ (L2^{dppe}) in methanol-water (1:1). Inset: the isotope patterns of the dominant signals at m/z = 1111 and 1055 with the simulated patterns.

Fig. S6. Perspective views of (a) C-[Ni(L3^{dppe})] and A-[Ni(L3^{dppe})] molecules with an intermolecular NH···O hydrogen bond (dashed line) and (b) a packing structure viewed from crystallographic *a*-axis of 2_{Ni} . Colour code: Au, pink; Ni, blue-green; S, yellow; P, orange; O, red; N, blue; and C, grey. H atoms were omitted for clarity.

Fig. S7. Simulated (red) and observed (black) powder X-ray diffraction patterns of 2_{Ni}.

Fig. S8. Perspective views of (a) $[Zn(L1^{dppm})]$ and $[Zn(L2^{dppm})]$ molecules with an intermolecular NH···O hydrogen bond (dashed line) and (b) a packing structure viewed from the crystallographic *b*-axis of 1_{Zn} . Colour code: Au, pink; Zn, pale-purple; S, yellow; P, orange; O, red; N, blue; and C, grey. H atoms were omitted for clarity.

Fig. S9. Perspective views of (a) C-[Zn(L3^{dppe})] and A-[Zn(L3^{dppe})] molecules with an intermolecular NH···O hydrogen bond (dashed line) and (b) a packing structure viewed from crystallographic *a*-axis of 2_{zn} . Colour code: Au, pink; Zn, pale-purple; S, yellow; P, orange; O, red; N, blue; and C, grey. H atoms were omitted for clarity.

Fig. S10. Simulated (red) and observed (black) powder X-ray diffraction patterns of 1_{Zn}.

Fig. S11. Simulated (red) and observed (black) powder X-ray diffraction patterns of 2_{Zn} .

Fig. S12. ESI mass spectra of the reaction mixture of $L1^{dppm}$, $L2^{dppm}$ and zinc acetate in methanolwater (1:1): (i) $[Zn{Au_2(dppm)(L-cys)_2}+Na]^+ (m/z = 1103.01)$, (ii) $[Zn{Au_2(dppm)(L-cys)(D-pen)_2}+Na]^+ (m/z = 1131.04)$ and (iii) $[Zn{Au_2(dppm)(D-pen)_2}+Na]^+ (m/z = 1159.08)$.

Fig. S13. ESI mass spectra of the reaction mixture of $L1^{dppe}$, $L2^{dppe}$ and zinc acetate in methanolwater (1:1): (i) $[Zn{Au_2(dppe)(L-cys)(D-pen)}+Na]^+ (m/z = 1145.06)$.