Supporting Information

Polyoxometalate-based Crystalline Material as Highly Sensitive

Electrochemical Sensor for Detecting Trace Cr(VI)

Xing Xin, Na Hu, Yuanyuan Ma*, Yali Wang, Lin Hou, Heng Zhang, Zhangang Han*

Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China Email: mayy334@hebtu.edu.cn; hanzg116@126.com, <u>hanzg116@hebtu.edu.cn</u>

1.	X-ray crysta	stallography		S2
	Table S1	Crystal analytical data of compounds 1-2		S2
	Table S2	The BVS calculated results of heteroatoms in 1-2		S2
	Table S3	Peak potential data (mV) for 1-2 at a sweep rate of 110 mV	·s ⁻¹ S3	
	Figure S1	The representation of 2		S4
	Figure S2	The representation of supramolecular structure of 2		S4
2. 8	Structural Cha	aracterization		S5
	Figure S3	XPS spectra of 2		S5
	Figure S4.	IR spectrum of 1-2		S5
	Figure S5.	TG, DSC and TG curves of 1-2		S5
	Figure S6	XRD patterns of 1-2		S6
	Figure S7	Nyquist plots of 1-2	56	

1. X-ray Crystallography.

Select the block crystal with regular size in the products, adhered it on the top of glass fiber, measured on sample table, and the crystal diffraction point data was collected at the temperature of 296(2) K by using a ray of Mo-K ray ($\lambda = 0.71073$ Å). The crystal structure data are analyzed by SHELEXL program, modified by the full matrix least square method, and all non-hydrogen atoms are corrected by anisotropy. The crystal data of compounds **1-2** are shown in Table S1.

Compounds	1	2			
Empirical formula	$C_{26}H_{72}N_4O_{71}P_8Mo_{12}Fe_2Na_4$	$C_{104}H_{182}N_{16}O_{137}P_{16}Mo_{24}Fe_2$			
Formula weight	3179.56	6758.48			
Crystal system	Monoclinic	Triclinic			
Space group	C2/c	<i>P</i> -1			
<i>a</i> (Å)	20.839(11)	14.478(8)			
<i>b</i> (Å)	18.237(9)	15.038(9)			
c (Å)	21.622(11)	26.595(15)			
α, β, γ (°)	90, 99.994(7), 90	79.208(8), 81.821(8), 70.161(7)			
Volume ($Å^3$), Z	8093(7), 4	5331(5), 1			
Density (calculated)	2.601 Mg/m ³	2.106 Mg/m ³			
Absorption coefficient	2.444 mm ⁻¹	1.719 mm ⁻¹			
$F_{(000)}$	6136	3318			
Goodness-of-fit on F^2	1.064	1.059			
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	$R_1 = 0.0413, wR_2 = 0.1220$	$R_1 = 0.0429, wR_2 = 0.1144$			
<i>R</i> indices (all data)	$R_1 = 0.0427, wR_2 = 0.1232$	$R_1 = 0.0467, wR_2 = 0.1177$			
$R_1 = \sum F_o - F_c / \sum F_o ; wR_2 = \{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}$					

Table S1Crystal analytical data of compounds 1-2.

Table S2The bond valence sum (BVS) calculated results of heteroatoms in compounds 1-2.

Compo	und 1	Compou	Compound 2			
Mo1	5.314	Mo1	4.564	Fe1	1.511	
Mo2	5.403	Mo2	4.544	Fe2	1.592	
Mo3	5.313	Mo3	4.562	P1	4.397	
Mo4	5.272	Mo4	4.505	P2	4.366	
Mo5	5.330	Mo5	4.538	P3	4.375	
Mo6	5.399	Mo6	4.632	P4	4.379	
P1	4.879	Mo7	4.572	P5	4.366	
P2	4.944	Mo8	4.536	P6	4.315	
Р3	4.991	Mo9	4.521	P7	4.294	
P4	4.870	Mo10	4.552	P8	4.393	
Fe1	1.917	Mo11	4.593			
Fe2	1.589	Mo12	4.519			
Na1	0.793					
Na2	0.386					

Scan rate 110 mV s ⁻¹	<i>E</i> _{1/2} (I) / mV	<i>E</i> _{1/2} (II) / mV	<i>E</i> _{1/2} (III) / mV
compound 1	-23.1	229.3	367.5
compound 2	-27.2	224.8	363.6

Table S3Peak potential data (mV) for 1-2 at a sweep rate of $110 \text{ mV} \cdot \text{s}^{-1}$.

Concretely, the possible reaction for each reversible redox peak are as follows:

$$\begin{split} P_4 Mo_6 O_{31}{}^{12-} + 2e^- + 2H^+ &= H_2 P_4 Mo_6 O_{31}{}^{12-} \\ H_2 P_4 Mo_6 O_{31}{}^{12-} + 2e^- + 2H^+ &= H_4 P_4 Mo_6 O_{31}{}^{12-} \\ H_4 P_4 Mo_6 O_{31}{}^{12-} + 2e^- + 2H^+ &= H_6 P_4 Mo_6 O_{31}{}^{12-} \end{split}$$

Figure S1 The mixed ball-stick and polyhedral view of (a) $\{Fe(P_4Mo_6)_2\}^{n-}$ unit; (b) The mixed polyhedral and space-filling view showing the $\{Fe(P_4Mo_6)_2\}^{n-}$ unit surrounded by H₂bpp cations in **2** along *c* axis, to formed the 'core-shell' structure.

Figure S2 (a) The polyhedral and ball-and-stick views of the basic unsymmetrical units in 2; (b) the stacking view of {Fe(P₄Mo₆)₂} polyanions and bpp cations in 2 along b axis.

2. Structural characterization

Figure S3 (a)-(b) The XPS spectra of Mo and Fe elements in compound 2.

The IR spectrum of **1-2** exhibits various characteristic peaks at 1012, 960, 744 and 686 cm⁻¹ are attributed to v(P-O), $v(Mo=O_t)$ and v(Mo-O-Mo) vibrations, which proves the existence of phosphomolybdates basic framework; the peaks at 1506 and 1635 cm⁻¹ are corresponding to the v(C-C) and v(C-N) in the organic molecules H₂bpp.

Figure S4 The IR spectrum of compounds 1-2.

Figure S6 The XRD patterns of compounds 1-2.

Figure S7 Nyquist plots of electrochemical impedance spectra (EIS) of 1/2-GCE, pure GCE and carbon powder modified GCE recorded in $0.5 \text{ M H}_2\text{SO}_4$ under -0.052 V.