Supporting Information

Magnesium-catalyzed hydroboration of organic carbonates, carbon dioxide and esters

Xu Cao,^{a†} Weifan Wang,^{a†} Kai Lu,^a Weiwei Yao,^{*b} Fei Xue^{*a} and Mengtao Ma^{*a}

^a College of Science, Nanjing Forestry University, Nanjing 210037, China
^b College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China

Contents

General Information General Procedure for Hydroboration of Carbonates A Typical Procedure for the Synthesis of Boronate Esters and Their Hydrolysis to Alcohols Optimization of Esters Hydroboration General Procedure for Hydroboration of Esters General Procedure for Hydroboration of CO₂ ¹H, ¹³C and ¹¹B NMR Spectra References **General Information**. All reactions were performed under an atmosphere of nitrogen using glovebox technique. ¹H, ¹³C{¹H}, and ¹¹B{¹H} NMR spectra were recorded at 25 °C on Bruker Avance III 600 MHz or 400 MHz spectrometer in deuterated solvents and were referenced to the resonances of the solvent used. The following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. All commercially available chemicals were purchased from Sigma-Aldrich or Alfa Aesar, and used without further purification. The compounds [(^{Ar}Nacnac)Mg]₂ (Ar = Dipp, Mes, Xyl, DippXyl) and [(^{Xyl}Nacnac)MgI(OEt₂)] were prepared by literature procedures.^{S1-4}

General Procedure for Hydroboration of Carbonates. Carbonates (0.40 mmol), HBpin (1.3 mmol) and catalyst **1** (1 mol%) were placed in a 10 ml Schlenk flask equipped with a magnetic stir bar inside the glove box. The reaction mixture was stirred for 6 h at 25 °C, and then subjected to NMR analysis. The progress of the reaction was monitored by ¹H NMR, ¹³C NMR, and ¹¹B NMR, which indicated the completion of the reaction by the disappearance of the carbonate proton and appearance of new products and CH₃OBpin.

BpinO OBpin 2a

¹H NMR (CDCl₃): δ 3.86 (s, 4H, OC*H*₂), 1.17 (s, 24H, BOC*Me*₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 82.65 (BOCMe₂), 64.98 (OCH₂), 24.54 (BOC*Me*₂). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.22.

BpinO OBpin 2b

¹H NMR (CDCl₃): δ 4.22-4.17 (m, 1H, CH), 3.66 (d, ³*J*_{HH} = 4.2 Hz, 2H, OCH₂), 1.17 (s, 24H, BOC*Me*₂), 1.09 (d, ³*J*_{HH} = 6.0 Hz, 3H, *Me*). ¹³C {¹H} NMR (151 MHz, CDCl₃): δ 82.66, 82.62 (BOCMe₂), 70.27 (OCH₂), 69.06 (CH), 24.55, 24.48 (BOC*Me*₂), 18.41 (*Me*). ¹¹B {¹H} NMR (193 MHz, CDCl₃): δ 22.22.

BpinO OBpin _{2c}

¹H NMR (CDCl₃): δ 3.99-3.80 (m, 1H, CH), 3.77-3.65 (m, 2H, OCH₂), 1.49-1.36 (m,

2H, CH₂), 1.17 (s, 24H, BOC*Me*₂), 0.84 (t, ${}^{3}J_{HH} = 7.2$ Hz, 3H, *Me*). ${}^{13}C{}^{1}H$ NMR (151 MHz, CDCl₃): δ 82.67, 82.46 (BOCMe₂), 77.08 (CH), 68.29(OCH₂), 25.20 (CH₂), 24.50, 24.47 (BOC*Me*₂), 9.39 (*Me*). ${}^{11}B{}^{1}H$ NMR (193 MHz, CDCl₃): δ 22.23.

OBPin O OBpin 2d

¹H NMR (CDCl₃): δ 4.24-4.20 (m, 1H, CH), 3.87-3.74 (m, 2H, OCH₂), 3.46-3.32 (m, 2H, CH₂), 3.27 (s, 3H, CH₃), 1.17 (s, 24H, BOCMe₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 82.72, 82.66 (BOCMe₂), 65.40 (CH), 77.09 (OCH₂), 59.02 (CH₂), 52.49 (OCH₃). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.24.

OBpin Ph_O___OBpin 2e

¹H NMR (CDCl₃): δ 7.24 (d, *J*_{HH} = 7.8 Hz, 2H, *Ar*-*H*), 7.23 (t, *J*_{HH} = 7.5 Hz, 2H, *Ar*-*H*), 7.16-7.13 (m, 1H, *Ar*-*H*), 4.44 (d, *J*_{HH} = 3.1 Hz, 2H, *OCH*₂), 4.27 (dt, *J*_{HH} = 9.9, 4.8 Hz, 1H, *CH*), 3.87 (dd, *J*_{HH} = 11.0, 4.0 Hz, 1H, *CH*), 3.49 (dd, *J*_{HH} = 11.0, 6.3 Hz, 1H, *CH*), 3.44 (d, *J*_{HH} = 5.8 Hz, 2H, *OCH*₂), 1.16 (s, 24H, BOC*Me*₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 82.59, 82.57 (BOCMe₂), 65.47 (*C*H₂), 77.22 (OCH₂), 127.6 (*Ar*-*C*). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.13.

OBpin BpinO____OBpin 2f

¹H NMR (CDCl₃): δ 4.18 (tt, *J*_{HH} = 6.2, 3.0 Hz, 1H, *CH*), 3.83 (dd, *J*_{HH} = 6.1, 2.9 Hz, 2H, OCH₂), 3.75 (dd, *J*_{HH} = 11,6.2 Hz, 2H, *CH*₂), 1.17 (s, 36H, BOC*Me*₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 82.54, 82.50 (BOCMe₂), 77.21 (*C*H), 64.87(OCH₂), 24.50, 24.41 (BOC*Me*₂). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.20.

OBpin OBpin 2g

¹H NMR (CDCl₃): δ 5.77-5.71 (m, 1H, CH=CH₂), 5.28-5.25 (m, 1H, CH=CH₂), 5.10-5.08 (m, 1H, CH=CH₂), 4.57 (q, J_{HH} = 5.5 Hz, 1H, CH), 3.72 (d, J_{HH} = 6.0 Hz, 2H, OCH₂), 1.17 (s, 24H, BOCMe₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 135.34 (CH=CH₂), 116.35 (CH=CH₂), 82.66, 82.66 (BOCMe₂), 74.77 (CH), 67.77 (OCH₂),

24.54, 24.48 (BOCMe₂). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.21.

OBpin BpinO Ph 2h

¹H NMR (CDCl₃): δ 7.28-7.04 (m, 4H, *Ar-H*), 5.22 (dd, *J*_{HH} = 8.0, 4.1 Hz, 1H, *CH*), 3.89-3.88 (m, 2H, *CH*₂), 1.06 (s, 24H, BOC*Me*₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 128.09, 127.94, 127.69, 127.45 (*Ar-C*), 82.62, 82.50 (BOCMe₂), 77.07 (*C*H), 68.69(OCH₂). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.38.

BpinO____OBpin ____2i

¹H NMR (CDCl₃): δ 3.85 (t, ³*J*_{HH} = 6.6 Hz, 4H, OC*H*₂), 1.78-1.75 (m, 2H, C*H*₂), 1.18 (s, 24H, BOC*Me*₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 82.65 (BOCMe₂), 61.48 (OCH₂), 33.23 (CH₂), 24.68 (BOC*Me*₂). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.22.

BpinO OBpin 2j

¹H NMR (CDCl₃): δ 3.82 (q, *J*_{HH} =4.7, 4H, OC*H*₂), 1.17 (s, 24H, BOC*Me*₂), 1.14 (s, 6H, *Me*). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 82.62 (BOCMe₂), 70.32 (OCH₂), 36.70 (*C*(Me)₂), 24.60 (BOC*Me*₂), 20.87 (*Me*). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.35.

OBpin OBpin 2k

¹H NMR (CDCl₃): δ 3.58 (d, ³*J*_{HH} = 8.4 Hz, 4H, OC*H*₂), 1.91 (s, 4H, C*H*₂), 1.17-1.16 (24H, BOC*Me*₂, C*H*₂), 0.79 (t, ³*J*_{HH} = 6.6 Hz, 3H, CH₂*Me*), 0.75 (s, 3H, C*Me*). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 82.46 (BOCMe₂), 68.71 (OCH₂), 38.99 (CMe), 35.92 (CCH₂), 24.48 (BOC*Me*₂), 18.21 (C*Me*), 16.32 (CH₂Me), 14.83 (CH₂*Me*). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.24.

OBpin 2

¹H NMR (CDCl₃): δ 7.26-7.15 (m, 5H, Ar–*H*), 4.84 (s, 2H, OC*H*₂), 1.16 (s, 12H, BOC*Me*₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 139.14, 128.26, 127.20, 126.56 (Ar–*C*),

82.91 (BOCMe₂), 66.66 (OCH₂), 24.60 (BOC*Me*₂). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.35.

OBpin 2m

¹H NMR (CDCl₃): δ 7.31-7.16 (m, 2H, Ar–*H*), 7.00-6.94 (m, 3H, Ar–*H*), 1.19 (s, 12H, BOC*Me*₂). ¹³C {¹H} NMR (151 MHz, CDCl₃): δ 153.46, 129.24, 123.01, 119.48 (Ar–*C*), 83.43 (BOCMe₂), 24.58 (BOC*Me*₂). ¹¹B {¹H} NMR (193 MHz, CDCl₃): δ 22.23.

OBpin 2n

¹H NMR (CDCl₃): δ 3.84 (q, ³*J*_{HH} = 7.2 Hz, 2H, OC*H*₂), 1.17 (s, 12H, BOC*Me*₂), 1.15 (t, ³*J*_{HH} = 7.2 Hz, 3H, *Me*). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 82.44 (BOCMe₂), 60.49 (OCH₂), 24.50 (BOC*Me*₂), 17.11 (*Me*). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.07.

MeOBpin 2p

¹H NMR (CDCl₃): δ 3.46 (s, 3H, *Me*), 1.18 (s, 12H, BOC*Me*₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 82.72 (BOCMe₂), 52.54 (*Me*), 24.53 (BOC*Me*₂). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.24.

OBpin 2q

¹H NMR (CDCl₃): δ 5.89-5.80 (m, 1H, CH=CH₂), 5.22-5.02 (m, 2H, CH=CH₂), 5.05-5.02 (m, 2H, CH₂), 3.52 (s, 3H, OCH₃), 1.17 (s, 24H, BOCMe₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 135.35 (CH=CH₂), 114.88 (CH=CH₂), 82.74, 82.67(BOCMe₂), 76.75 (CH), 65.44 (OCH₂), 24.54, 24.48 (BOCMe₂). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.23.

A Typical Procedure for the Synthesis of Boronate Esters and Their Hydrolysis to Alcohols

Catalyst 1 (1% mol), 4-ethyl-1,3-dioxolan-2-one (2c, 0.40 mmol) and HBpin (1.3 mmol) were placed in an oven-dried 10 ml Schlenk tube. The mixture was stirred at 25 °C for 6 h, and then subjected to NMR analysis. The crude product was purified by flash column chromatography on silica gel with acetate/hexane (1/4) as eluents to give the alcohol, 1, 2-butanediol (34 mg, 0.38 mmol, 94% yield).

∕∕`он он

¹H NMR (CDCl₃): δ 4.11 (s, 1H, CHO*H*), 4.01 (s, 1H, CH₂O*H*), 3.61 (d, ³*J*_{HH} = 10.2 Hz, 2H, C*H*₂OH), 3.43-3.40 (m, 1 H, C*H*OH), 1.48-1.43 (m, 2H, C*H*₂Me), 0.95 (t, ³*J*_{HH} = 7.8 Hz, 3H, CH₂*Me*). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 73.77 (*C*HOH), 66.31 (*C*H₂OH), 26.03 (*C*H₂Me), 9.90 (CH₂*Me*).

Catalyst 1 (1% mol), 4-(hydroxymethyl)-1,3-dioxolan-2-one (2f, 0.40 mmol) and HBpin (1.68 mmol) were placed in an oven-dried 10 ml Schlenk tube. The mixture was stirred at 25 °C for 6 h, and then subjected to NMR analysis. The crude product was hydrolyzed with 6 M HCl (10 ml). The aqueous phase was washed with diethyl ether (3 x 10 ml) and the combined organic phases were washed with water (10 ml). The combined organic phases were concentrated and the crude product was purified by flash chromatography (SiO₂, DCM:MeOH 9:1–2:1). The product was obtained as a colourless, vicious oil (92% yield).

НООН

¹H NMR (D₂O): δ 3.71 (ddd, *J*_{HH} =10.8,1 H, CHO*H*), 3.56(dd, *J*_{HH} =11.4, 2H, CH₂O*H*), 3.45(d, ³*J*_{HH} = 11.2 Hz, 2 H, CH₂OH). ¹³C{¹H} NMR (101 MHz, D₂O): δ 72.03, 62.4.

$\frac{\text{O}}{\text{O}} + 2 \text{HBpin} \frac{\text{Mg(I) 1}}{\text{rt}} 2 \text{OBpin}$					
Entry	Cat	Cat. Loading	Sol	Time	Yield ^a
		(mol%)		(h)	(%)
1	-	-	C_6D_6	1	0
2	-	-	C_6D_6	15	0^b
3	1	5	C_6D_6	< 0.17	99
4	1	1	C_6D_6	0.67	99
5	1	1	-	1	99
6	1	0.1	-	3	77
7	1	0.1	-	5	99

Table S1. Optimization of Esters Hydroboration

^{*a*}The reaction was monitored by ¹H NMR spectroscopy. ^{*b*}70 °C.

General Procedure for Hydroboration of Esters. In a glove box, catalyst **1** (1 mol%) was added to a solution of esters (1.0 mmol) and HBpin (2.0 mmol) in a 10 ml Schlenk flask. The reaction mixture was stirred at 25 °C for 1 h, and then subjected to NMR analysis. The progress of the reaction was monitored by ¹H NMR, ¹³C NMR, and ¹¹B NMR, which indicated the completion of the reaction by the disappearance of the ester proton and appearance of new products.

OBpin 3a

¹H NMR (CDCl₃): δ 3.89 (q, ³*J*_{HH} = 7.2 Hz, 2H, MeC*H*₂OBpin), 1.23 (t, ³*J*_{HH} = 7.2 Hz, 3H, *Me*CH₂OBpin), 1.20 (s, 12H, BOC*Me*₂). ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 82.36 (BOCMe₂), 60.69 (MeCH₂OBpin), 24.74 (BOC*Me*₂), 17.52 (*Me*CH₂OBpin). ¹¹B{¹H} NMR (193 MHz, CDCl₃): δ 22.48.

BpinO _____ 3b

¹H NMR (C₆D₆): δ 3.69 (d, ³*J*_{HH} = 6.6 Hz, 2H, C*H*₂OBpin), 1.77 (d, ³*J*_{HH} = 6.6 Hz, C*H*Me₂), 1.07 (s, 12H, BOC*Me*₂), 0.83 (d, ³*J*_{HH} = 6.6 Hz, 6H, CH*Me*₂). ¹³C{¹H} NMR

(151 MHz, C₆D₆): δ 82.36 (BOCMe₂), 71.52 (CH₂OBpin), 30.31 (CHMe₂), 24.75 (BOCMe₂), 18.95 (CHMe₂). ¹¹B{¹H} NMR (193 MHz, C₆D₆): δ 22.51.

Br-(CH₂)₅-OBpin 3c

¹H NMR (C₆D₆): δ 3.84 (t, ³*J*_{HH} = 7.2 Hz, 2H, C*H*₂OBpin), 2.92 (t, ³*J*_{HH} = 7.2 Hz, 2H, (C*H*₂)₅), 1.46-1.37 (m, 6H, (C*H*₂)₅), 1.10-1.09 (m, 2H, (C*H*₂)₅), 1.07 (s, 12H, BOC*Me*₂). ¹³C{¹H} NMR (151 MHz, C₆D₆): δ 82.35 (BOCMe₂), 64.84 (CH₂OBpin), 33.58, 32.99, 31.69, 28.02, 25.11 ((CH₂)₅), 24.96 (BOC*Me*₂). ¹¹B{¹H} NMR (193 MHz, C₆D₆): δ 22.50.

OBpin 3d

¹H NMR (C₆D₆): δ 5.12 (s, 1H, C=CH₂), 4.80–4.79 (m, C=CH₂), 4.30 (s, 2 H, CH₂OBpin), 1.55 (s, 3 H, *Me*C=CH₂), 1.05 (s, 12 H, BOC*Me*₂). ¹³C{¹H} NMR (151 MHz, C₆D₆): δ 143.31 (C=CH₂), 110.14 (C=CH₂), 83.16 (BOCMe₂), 68.49 (CH₂OBpin), 24.95, 24.74 (BOC*Me*₂). ¹¹B{¹H} NMR (193 MHz, C₆D₆): δ 22.66.

OBpin _{3e}

¹H NMR (C₆D₆): δ 7.30 (d, ³*J*_{HH} = 7.2 Hz, 2H, Ar-*H*), 7.13 (t, ³*J*_{HH} = 7.2 Hz, 2H, Ar-*H*), 7.05 (t, ³*J*_{HH} = 7.2 Hz, 1H, Ar-*H*), 4.94 (s, 2H, CH₂OBpin), 1.04 (s, 12H, BOC*Me*₂). ¹³C{¹H} NMR (151 MHz, C₆D₆): δ 140.04, 130.02, 128.76, 128.58, 127.57, 127.04 (Ar-*C*), 82.75 (BOCMe₂), 66.94 (CH₂OBpin), 24.70 (BOC*Me*₂). ¹¹B{¹H} NMR (193 MHz, C₆D₆): δ 22.75.

OBpin 3f

¹H NMR (C₆D₆): δ 6.91-6.85 (m, 1H, C₄H₃S), 6.82-6.81 (m, 1H, C₄H₃S), 6.68-6.66 (m, 1H, C₄H₃S), 5.00 (s, 1H, CH₂OBpin), 1.04 (s, 12H, BOC*Me*₂). ¹³C {¹H} NMR (175 MHz, C₆D₆): δ 142.80, 126.76, 126.08, 125.67 (C₄H₃S), 82.91 (BOCMe₂), 61.84 (CH₂OBpin), 24.70 (BOC*Me*₂). ¹¹B{¹H} NMR (193 MHz, C₆D₆): δ 22.51.

OBpin └ _ OBpin 3g

¹H NMR (C₆D₆): δ 4.45-4.42 (m, 1H, MeCH), 3.80 (d, ³*J*_{HH} = 6.0 Hz, 2H, C*H*₂OBpin), 1.10, 1.07 (s, 12H, BOC*Me*₂), 1.05-1.04 (m, 3H, *Me*CH). ¹³C{¹H} NMR (151 MHz, C₆D₆): δ 82.59, 82.44 (BOCMe₂), 70.72 (MeCH), 69.56 (*C*H₂OBpin), 24.81, 24.78, 24.74, 24.67 (BOC*Me*₂), 18.59 (*Me*CH). ¹¹B{¹H} NMR (193 MHz, C₆D₆): δ 22.24.

OBpin OBpin _{3h}

¹H NMR (C₆D₆): δ 7.51-7.49 (m, 2H, Ar-*H*), 7.10-7.07 (m, 2H, Ar-*H*), 5.06 (s, 4H, Ar-CH₂OBpin), 1.03 (s, 24H, BOC*Me*₂). ¹³C{¹H} NMR (151 MHz, C₆D₆): δ 137.31, 127.80, 127.74 (Ar-*C*), 82.73 (BOCMe₂), 64.52 (Ar-CH₂OBpin), 24.69 (BOCMe₂). ¹¹B{¹H} NMR (193 MHz, C₆D₆): δ 22.51.

¹H NMR (C₆D₆): δ 4.22-4.18 (m, 1H, CHCH₂CH₂CH₂), 3.97-3.93 (m, 2H, CHCH₂CH₂CH₂), 1.80-1.66 (m, 2H, CHCH₂CH₂CH₂), 1.58-1.55 (m, 2H, CHCH₂CH₂CH₂), 1.36-1.33 (m, 2H, C₆H₁₃), 1.26-1.17 (m, 8H, C₆H₁₃), 1.07, 1.06 (s, 12H, BOC*Me*₂), 0.86 (t, ³*J*_{HH} = 7.2 Hz, 3 H, C₆H₁₃). ¹³C{¹H} NMR (151 MHz, C₆D₆): δ 82.38, 82.22 (BOCMe₂), 65.02 (CHCH₂CH₂CH₂), 37.06 (CHCH₂CH₂CH₂), 33.12 (CHCH₂CH₂CH₂), 32.28 (CHCH₂CH₂CH₂), 29.62, 28.20, 25.94, 24.75 (C₆H₁₃), 24.70, 24.66 (BOC*Me*₂), 23.06, 14.36 (C₆H₁₃). ¹¹B{¹H} NMR (193 MHz, C₆D₆): δ 22.29.

General Procedure for Hydroboration of CO₂

In a glove box, an oven-dried 10 ml Schlenk flask charged with mesitylene (0.50 mmol), HBpin (0.50 mmol) and catalyst 1 (5% mmol) was evaculated and refilled with CO_2 gas (1 atm) for three cycles, The resulting mixture was stirring at 100 °C for 15 h, and then subjected to NMR analysis.

Scheme S1: Mechanistic control experiments

When a reaction of ethyl formate, postulated as an intermediate, was carried out with Mg(I)-HBpin catalytic system, the usually observed reaction products were present in the crude mixture (A). Without the catalyst **1**, however, the reduction does not proceed, as unreacted starting material and HBpin where still present in the reaction mixture, and no conversion was observed (B). These results suggest that the presence of active Mg(I) species is required for the reaction to take place in each catalytic cycle.

¹¹B → OBpin 3d

ppm

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹¹B OBpin OBpin **3h** 22.74

NMR Spectra of CO₂ Hydroboration Products [MeOBpin (*), HBpin (∇), Mesitylene (•)].

References:

S1. S. P. Green, A. Stasch and C. Jones, Science, 2007, 318, 1754.

S2. S. J. Bonyhady, C. Jones, S. Nembenna, A. Stasch, A. J. Edwards and G. J. McIntyre, *Chem. Eur. J.*, 2010, **16**, 938.

S3. S. J. Bonyhady, D. Collis, N. Holzmann, A. J. Edwards, R. O. Piltz, G. Frenking,A. Stasch and C. Jones, *Nat. Commun.*, 2018, 9, 3079.

S4. J. Li, M. Luo, X. sheng, H. Hua, W. Yao, S. A. Pullarkat, L. Xu and M. Ma, *Org. Chem. Front.*, 2018, **5**, 3538.