Supporting Information

$K_{0.38}(H_2O)_{0.82}MoS_2$ as a universal host for rechargeable aqueous cation (K⁺, Na⁺, Li⁺, NH₄⁺, Mg²⁺, Al³⁺) batteries

Miao Xie,^{ab} Wei Zhao,^{*a} Yuanlv Mao,^{ab} and Fuqiang Huang^{*ac}

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China. E-mail:zhaowei220@mail.sic.ac.cn; huangfq@mail.sic.ac.cn

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

^c State Key L	aboratory of Rare Earth	Materials Chemistry	and Applications,	College of Chemistry	and Molecular	Engineering,
Peking	University,	Beijing	100871,	Ρ.	R.	China

1. Supplementary figures

 $\label{eq:Fig.S1} \mbox{Fig.S1} \mbox{ SEM image and elemental mapping of $K_{0.38}(H_2O)_{0.82}MoS_2$}.$

Fig. S2 Cyclic voltammetry curves of KMS electrode for AI^{3+} electrolyte at the scan rate of 1 mV s⁻¹ based on the voltage range of -0.8-0.4 V vs. Ag/AgCl.

Fig. S3 Galvanostatic discharge-charge profiles of KMS electrode at the current densities of 0.5A g⁻¹, 1 A g⁻¹, 2 A g⁻¹, 4 A g⁻¹, 8 A g⁻¹ in 0.5 M sulfate solutions: (a) K_2SO_4 , (b) Na_2SO_4 , (c) Li_2SO_4 , (d) $(NH_4)_2SO_4$, (e) $MgSO_4$, (f) $(AI)_2(SO_4)_3$.

Fig. S4 (a) The cycling stability of KMS electrode in $0.5 \text{ M K}_2\text{SO}_4$ aqueous solution at the current density of 5 A g⁻¹, (b) Galvanostatic discharge-charge profiles of KMS at the 1th and 500th cycles, (c) SEM image of KMS electrode after 500 cycles.

Fig. S5 Sweep voltammetry of KMS electrode at varies scan rates for (a) Li⁺, (b) Na⁺, (c) NH₄⁺, (d) Al³⁺ aqueous electrolytes.

Fig. S6 Relationship between the peak currents and corresponding scan rates for KMS electrode in (a) Li^{+} , (b) Na^{+} , (c) NH_{4}^{+} , (d) Al^{3+} aqueous electrolytes.

Fig. S7 Cyclic voltammetry curves of KMS electrode at 0.5mV s⁻¹ in 1M CsCl.

Fig. S8 XRD patterns of the charged state for KMS electrode in different aqueous electrolytes.

Fig. S9 Raman spectrum of charged state for KMS electrode

2. Supplementary tables

Cation inserted	discharge capacity(mA h g ⁻¹)	charge capacity(mA h g ⁻¹)	Coulombic efficiency (%)	Capacity fade(%/cycle)
Li*	51.39	51.92	98.97	0.68
Na⁺	60.94	62.08	98.16	0.72
K⁺	64.37	68.01	94.64	0.88
NH₄⁺	50.74	53.90	94.14	0.56
Mg ²⁺	54.39	56.38	96.47	0.59
Al ³⁺	32.16	34.03	94.50	0.80

Table. S1Initial discharge capacity and the second charge capacity of different interaction cations at 0.5 A g⁻¹ along withcalculated capacity fade rate.

 Table. S2
 The summary of calculated b-values of KMS electrode in varies electrolytes.

lon type	K⁺	Na⁺	Li*	NH4 ⁺	Mg ²⁺	Al ³⁺
Anodic peak1	0.67	0.74	0.71	0.57	0.77	0.75
Cathodic peak2	0.59	0.54	0.56	0.56	0.59	0.53

 Table. S3
 Physical and thermodynamic characteristics of selected cations.

lon type	К +	Na⁺	Li⁺	NH_4^+	Mg ²⁺	Al ³⁺
Ionic radius(nm)	0.152	0.102	0.078	0.148	0.066	0.053
Hydrated radius (nm)	0.331	0.358	0.382	0.331	0.428	0.48
Hydrated free energy (KJ mol ⁻¹)	-343	-405	-544	-	-1922	-4665