Introduction of organogermyl functionalities to the cage silsesquioxanes

Magdalena Grzelak,^{a,b*} Dawid Frąckowiak, ^b Rafał Januszewski,^{a,b} Bogdan Marciniec^{a,b*}

^a Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61–614, Poznań, Poland

E-mail: magdalena.grzelak@amu.edu.pl, bogdan.marciniec@amu.edu.pl

^b Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61–614, Poznań, Poland

Content

General Information
Measurements
General procedure for the synthesis of functionalized POSS derivatives
Hydrosilylation of vinyl- and allylgermanes with silsesquioxanes and spherosilicates and kinetic plots for the formation of products 2a-2d, 3a-3d, 5a-5d, 6a-6d, 7a-7d.
Kinetic plots for the hydrosilylation of Et ₃ SiCH=CH ₂ with silsesquioxanes and spherosilicates 10
Kinetic plots for the hydrosilylation of PhSi(Me) $_2$ CH=CH $_2$ with silsesquioxanes and spherosilicates. 11
The ¹ H NMR, ¹³ C NMR, ²⁹ Si NMR, MALDI TOF and ESI data of silsesquioxanes and spherosilicates 2-7
The ¹ H NMR, ¹³ C NMR, ²⁹ Si NMR, MALDI TOF and ESI data of products with germyl moiety 2a-d, 3a-d, 5a-d, 6a-d, 7a-d
(2a-2d)
(3a-d)
(5a-d)
(6a-d)
(7a-d)
The ¹ H NMR and ¹³ C NMR, ²⁹ Si NMR and MALDI TOF or ESI data of products with silyl moiety 2e-f, 3e- f, 5e-f, 6e-f, 7e-f

General Information

Chlorotriethylgermane (ABCR), chlorodimethylphenylgermane (Gelest); chlorodimethylsilane, dichlorodimethylsilane (Alfa Aesar); allylmagnesium chloride (2 M in THF), vinylmagnesium bromide (1 M in THF), tetrachlorosilane, trichlorosilane, triethylamine, Karstedt's catalyst [Pt₂(dvs)₃], H₂PtCl₆, [Rh(COD)Cl]₂, PtO₂, toluene, dichloromethane, (Sigma-Aldrich); TrisilanolIsobutyl POSS, DiSilanolIsobutyl POSS, TetraSilanolPhenyl POSS (Hybrid Plastics), CDCl₃ (Deutero), THF and diethyl ether (Fisher Chemical). THF and diethyl ether were distilled from sodium/benzophenone ketyl. Silsesquioxane substrates, i.e. 2 (7,17-dimethyl-7,17-dihydro-1,3,5,9,11,13,15,1-octaphenylhexacyclo[9.13.1^{1,9}.1^{3,15}.1^{5,13}.1^{11,19}]decasiloxane),¹ 3 (monodecker silsesquioxane),² 4 [(hydro)heptaisobutylsilsesquioxane],³ 5 (octahydrosilsesquioxane),⁴ [(dimethylsiloxy)hepta(isobutyl)octasilsesquioxane],⁵ 7 6 [oktakis(dimethylsiloxy)silsesquioxane]⁶ were prepared according to literature procedures. Allyland vinylgermanes **1a-d** were prepared from the respective chlorogermanes and allyl- and vinyImagnesium Grignard reagents. The representative synthetic procedure is given below.

Allyltriethylgermane

A magnetic stirrer and approx. 30 mL of freshly distilled diethyl ether were placed in a 50-mL, two-necked round-bottomed flask (previously dried under reduced pressure and filled with argon, equipped with a reflux condenser and an argon plug and gas bubbler). Then, 1.5 g (1.28 mL, 7.68 mmol) of chlorotriethylgermane was added to the stirred solvent, followed by the dropwise addition of 5 mL (9.99 mmol) of 2 M allyl magnesium chloride solution. The resulting suspension was vigorously stirred for 24 h at room temperature. After this time, GC/MS analysis was performed and full conversion of chlorogermanane to allyl derivative was confirmed. The precipitate was partially filtered on a sintered funnel and washed with pentane. The resulting milky suspension was filtered on a short celite column, rinsed with small portions of pentane. The solvent was removed under reduced pressure on a rotary evaporator, and the obtained crude product was subjected to a "trap to trap" distillation. Pure allyltriethylgermane was obtained as a colorless liquid (1.36 g, 88% yield).

- [1] Y. Morimoto, K. Watanabe, N. Ootake, J. Inagaki, K. Yoshida, K. Ohguma, US Patent 7449539 B2, 2008.
- [2] J. D. Lichtenhan, US Patent 6660823 B1, 2003.
- [3] M. Takeda, K. Kuroiwa, M. Mitsuishi, J. Matsui, Chem. Lett. 2015, 44, 1560–1562.
- [4] P. A. Agaskar, Inorg. Chem. 1991, 30, 2707–2708.
- [5] B. Dudziec, M. Rzonsowska, B. Marciniec, D. Brząkalski, B. Woźniak, Dalton Trans. 2014, 43, 13201–13207.
- [6] N. L. Dias Filho, H. A. De Aquino, G. Pires, L. Caetano, J. Braz. Chem. Soc. 2006, 17, 533–541.

Measurements

Nuclear magnetic resonance spectroscopy (NMR)

The ¹H (300, 400 MHz), ¹³C (75, 101 MHz), 135DEPT and ²⁹Si NMR (79 MHz) spectra were recorded with a Varian XL 300 MHz spectrometer and Varian VNMR-S 400 MHz spectrometer with samples in CDCl₃ solution. The chemical shifts are reported in ppm and were referenced to the residual solvent signals (δ H = 7.26 ppm, δ C = 77.36 ppm for CDCl₃).

In situ FT-IR spectroscopy

Real-timeFT-IR measurements were performed on a Mettler Toledo ReactIR 15 equipped with a DS 6.3 mm AgXDiComp Fiber Probe with a diamond sensor, and a Mercury Cadmium Telluride detector. For all the spectra 256 scans were recorded with the resolution of 1 cm⁻¹ in 1, 5 and 10 min intervals.

Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOFMS) and HRMS (ESI)

MALDI-TOF mass spectra were recorded on a UltrafleXtreme mass spectrometer (Bruker Daltonics), equipped with a SmartBeam II laser (355 nm) in 500-4000 m/z range. 2,5-Dihydroxybenzoic acid (DHB) served as matrix. HRMS (ESI) mass spectra were recorded on QTOF (Impact HD, Bruker).

General procedure for the synthesis of functionalized POSS derivatives.

To a 5 mL glass reactor equiped with *in situ* FT-IR probe SQ (100 mg, 1.0 eq.) of **2**, **3**, **5-7**, vinylgermane, allylgermane or vinylsilane (1.0/2.0 or 8.0 eq.) and toluene (1 mL) were added. The reaction mixture was stirred at 100°C for few minutes. After this time, the catalyst 10⁻⁴ mol% (per SiH group was added). After reaction, the mixture was filtered off by glass filter type G4 with silica-gel and Celite, solvent was evaporated and excess was removed under reduced pressure to give corresponding products **2-3a-f** and **5-7a-d**.

 $\text{Molar ratio } [\textbf{1}]:[\textbf{2}]:[\text{Pt}]-1:2:2 \times 10^{-4}, [\textbf{1}]:[\textbf{3/6}]:[\text{Pt}]-1:1:10^{-4}, [\textbf{1}]:[\textbf{5/7}]:[\text{Pt}]-1:8:8 \times 10^{-4}$

(2-7)

General scheme for functionalized POSS synthesis.

Picture of reaction system

Hydrosilylation of vinyl- and allylgermanes with silsesquioxanes and spherosilicates and kinetic plots for the formation of products 2a-2d, 3a-3d, 5a-5d, 6a-6d, 7a-7d.

Product	Ge	Molar ratio [1]:[2]:[Pt]	Reaction time [min] ^[a]	Yield [%] ^[b]
2a	Ge 1a	1 : 2 : 2 x 10 ⁻⁴	73	90
2b	Ge 1b	1 : 2 : 2 x 10 ⁻⁴	15	89
2c	Ge 10	1 : 2 : 2 x 10 ⁻⁴	1346	93
2d	Ge 1d	1 : 2 : 2 x 10 ⁻⁴	273	90

Hydrosilylation of vinyl- and allylgermanes (1a–1d) with double-decker silsesquioxane (2).

[a] Reaction monitored by FT-IR *in situ* and time measured for complete conversion of SQ. [b] Isolated yield.

Kinetic plots for the formation of **2a-2d** products.

Hydrosilylation of vinyl- and allylgermanes (1a–1d) with mono-decker silsesquioxane (3).

Product	Ge	Molar ratio [1]:[3]:[Pt]	Reaction time [min] ^[a]	Yield [%] ^[b]
3a	Ge 1a	1:1:10 ⁻⁴	72	92
3b	Ge [−] Ib	1:1:10 ⁻⁴	48	95
Зc	Ge 1c	1:1:10 ⁻⁴	532	90
3d	Ge 1d	1:1:10 ⁻⁴	1222	90

[a] Reaction monitored by FT-IR *in situ* and time measured for complete conversion of SQ. [b] Isolated yield.

Kinetic plots for the formation of **3a-3d** products.

sq	Product	Ge	Molar ratio [1]:[4/5]:[Pt]	Reaction time ^[a]	SiH Conversion [%] ^[b]	Yield [%] ^[c]
4	Not isolated	Ge 1a	1:1:10 ^{-4[d]}	30 h	65	-
4	Not isolated	Ge 1b	1:1:10-4	14 h	73	-
5a	5a	Ge 1a	1 : 8 : 8 x 10 ⁻⁴	2 min	98	94
5b	5b	Ge 1b	1 : 8 : 8 x 10 ⁻⁴	1 min	99	92
5c	5c	Ge 1c	1 : 8 : 8 x 10 ⁻⁴	2 min	98	94
5d	5d	Ge 1d	1 : 8 : 8 x 10 ⁻⁴	3 min	99	91

Hydrosilylation of vinyl- and allylgermanes (1a–1d) with cubic silsesquioxane (4 and 5).

[a] Reaction monitored by FT-IR in situ. [b] Confirmed by ¹H NMR spectroscopy. [c] Isolated yield.

Kinetic plots for the formation of **5a-5d** products.

Product	Ge		Molar ratio [1]:[6]:[Pt]	Reaction time [min] ^[a]	Yield [%] ^[b]
6a		.a	1:1:10 ⁻⁴	4	98
6b		.b	1:1:10 ⁻⁴	3	93
6c	Ge 1	Lc	1:1:10 ⁻⁴	203	91
6d		.d	1:1:10-4	333	97

Hydrosilylation of vinyl- and allylgermanes (1a–1d) with spherosilicate (6).

[a] Reaction monitored by FT-IR *in situ* and time measured for complete conversion of SQ. [b] Isolated yield.

Kinetic plots for the formation of **6a-6d** products.

Hydrosilylation of	vinyl- and	allylgermanes	(1a-1d) with	octaspherosilicate	(7).
, ,	,	, 0	. ,		• •

Product	Ge	Molar ratio [1]:[7]:[Pt]	Reaction time [min] ^[a]	Yield [%] ^[b]
7a	12 Ge-/	1:8:8 x 10 ⁻⁴	6	94
7b		1:8:8 x 10 ⁻⁴	4	95
7c	Ge 10	1 : 8 : 8 x 10 ⁻⁴	405	92
7d		1 : 8 : 8 x 10 ⁻⁴	140	91

[a] Reaction monitored by FT-IR *in situ* and time measured for complete conversion of SQ. [b] Isolated yield.

Kinetic plots for the formation of **7a-7d** products.

Kinetic plots for the hydrosilylation of Et₃SiCH=CH₂ with silsesquioxanes and spherosilicates.

For 4e addition of catalyst (10⁻⁴ mol%) after 48 h, 60 h and after 72h. After the last catalyst addition further conversion of SiH was not observed

Kinetic plots for the hydrosilylation of PhSi(Me)₂CH=CH₂ with silsesquioxanes and spherosilicates.

(1a)

Chemical Formula: C₈H₁₈Ge

¹H NMR (300 MHz, CDCl₃) δ 6.24 (dd, *J* = 20.1, 13.8 Hz, 1H), 5.99 (dd, *J* = 13.8, 3.6 Hz, 1H), 5.60 (dd, *J* = 20.1, 3.6 Hz, 1H), 1.03 (q, *J* = 7.8 Hz, 9H), 0.80 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.73, 130.69, 8.98, 4.20.

¹H NMR (300 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Chemical Formula: C₁₀H₁₄Ge

¹H NMR (300 MHz, Chloroform-*d*) δ 7.54 – 7.45 (m, 2H), 7.43 – 7.31 (m, 3H), 6.42 (dd, *J* = 20.0, 13.5 Hz, 1H), 6.05 (dd, *J* = 13.5, 3.2 Hz, 1H), 5.69 (dd, *J* = 20.0, 3.1 Hz, 1H), 0.47 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 140.69, 138.80, 133.50, 131.02, 128.60, 128.16, -3.33.

(1b)

¹³C NMR (101 MHz, CDCl₃)

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Ge

Chemical Formula: C9H20Ge

¹H NMR (300 MHz, Chloroform-*d*) δ 5.90 – 5.66 (m, 1H), 4.82 – 4.68 (m, 2H), 1.62 (d, *J* = 8.3 Hz, 2H), 0.97 (t, 9H), 0.69 (q, *J* = 7.8, 1.1 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 136.72, 111.71, 18.98, 9.03, 3.97.

¹H NMR (300 MHz, CDCl₃)

(1c)

Chemical Formula: C9H20Ge

¹H NMR (300 MHz, Chloroform-*d*) δ 7.60 – 7.48 (m, 2H), 7.46 – 7.34 (m, 3H), 6.02 – 5.78 (m, 1H), 5.03 – 4.80 (m, 2H), 1.96 (d, *J* = 8.2 Hz, 2H), 0.47 (d, *J* = 1.4 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 141.03, 135.55, 133.37, 128.57, 128.09, 112.84, 23.34, -4.06, -4.09.

¹H NMR (300 MHz, CDCl₃)

(1d)

¹³C NMR (101 MHz, CDCl₃)

The ¹H NMR, ¹³C NMR, ²⁹Si NMR, MALDI TOF and ESI data of silsesquioxanes and spherosilicates 2-7

(2) cis/trans

Chemical Formula: C₅₀H₄₈O₁₄Si₁₀

¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.22 (m, 40H), 5.02 (d, 2H), 0.41 (d, J = 1.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 134.24, 134.20, 134.17, 134.07, 131.74, 130.90, 130.63, 130.55, 127.97, 127.83, 127.79, 127.75, 0.77.

 ^{29}Si NMR (79 MHz, CDCl_3) δ -32.80, -77.83, -79.12, -79.31, -79.51.

MALDI-TOF MS (m/z): calcd. for $C_{50}H_{48}O_{14}Si_{10}Na$ 1176,76; found 1176,08.

¹H NMR (400 MHz, CDCl₃)

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(

Chemical Formula: C₃₃H₇₆O₁₃Si₉

¹H NMR (400 MHz, CDCl₃) δ 4.70 (s, 1H), 2.03 – 1.71 (m, 8H), 0.98 (dd, *J* = 6.6, 2.7 Hz, 48H), 0.68 – 0.53 (m, 16H), 0.21 (s, 3H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 25.95, 25.92, 25.89, 25.85, 25.82, 24.19, 24.11, 24.04, 23.68, 23.24, 23.18, 22.64, 0.70.

 ^{29}Si NMR (79 MHz, CDCl_3) δ -37.01, -66.96, -68.19, -68.90, -69.13.

MALDI-TOF MS (m/z): calcd. for C₃₃H₇₆O₁₃Si₉Na 955,31; found 955,33.

¹H NMR (400 MHz, CDCl₃)

125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15

²⁹Si NMR (79 MHz, CDCl₃)

واليداري والمتكر المتنا أشاكر

Chemical Formula: C₂₈H₆₄O₁₂Si₈

¹H NMR (300 MHz, Chloroform-d) δ 4.13 (s, 1H), 1.92 – 1.79 (m, 7H), 0.96 (dd, J = 6.6, 1.8 Hz, 42H), 0.62 (t, J = 7.1 Hz, 14H). ¹³C NMR (75 MHz, CDCl₃) δ 25.85, 25.81, 23.99, 22.64, 22.48. ²⁹Si NMR (79 MHz, CDCl₃) δ -67.55, -67.88, -85.02. MALDI-TOF MS (m/z): calcd. for C₂₈H₆₄O₁₂Si₈ 816,26; found 817,26.

¹H NMR (300 MHz, CDCl₃)

Chemical Formula: H₈O₁₂Si₈

 ^1H NMR (400 MHz, $C_6D_6)$ δ 4.21 (s, 1H). ^{29}Si NMR (79 MHz, $C_6D_6)$ δ -84.83 MALDI-TOF MS (m/z): calcd. for H_8O_{12}Si_8 423,82; found 426,34.

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.

Chemical Formula: C₃₀H₇₀O₁₃Si₉

¹H NMR (400 MHz, CDCl₃) δ 4.74 – 4.66 (m, 1H), 1.95 – 1.78 (m, 7H), 0.96 (dd, J = 6.6, 3.3 Hz, 42H), 0.68 – 0.56 (m, 14H), 0.22 (d, J = 2.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 25.84, 25.83, 24.01, 23.97, 22.59, 22.50, 0.33. ²⁹Si NMR (79 MHz, CDCl₃) δ -2.97, -66.93, -67.86, -109.05. MALDI-TOF MS (m/z): calcd. for C₃₀H₇₀O₁₃Si₉Na 913,26; found 913,26.

¹H NMR (400 MHz, CDCl₃)

MGiBu7OSiMe2H.10.fid

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(

(7) HMe₂SiO .OSiMe₂H HMe₂SiO-S O .OSiMe₂H Ò Ò O**9**iMe₂H ò_ HMe₂SiO `O Si OSiMe₂H HMe₂SiO

Chemical Formula: C₁₆H₅₆O₂₀Si₁₆

¹H NMR (400 MHz, CDCl₃) δ 4.75 – 4.70 (m, 8H), 0.25 (d, J = 2.8 Hz, 48H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 0.20.

 ^{29}Si NMR (79 MHz, CDCl3) δ -1.40, -108.67.

MALDI-TOF MS (m/z): calcd. for $C_{16}H_{56}O_{20}Si_{16}Na$ 1040,95; found 1040,95.

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

20 .00 80 40 0 -40 60 -20 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(

The ¹H NMR, ¹³C NMR, ²⁹Si NMR, MALDI TOF and ESI data of products with germyl moiety 2a-d, 3a-d, 5a-d, 6a-d, 7a-d.

(2a-2d)

(2a)

Chemical Formula: C₆₆H₈₄Ge₂O₁₄Si₁₀

¹H NMR (300 MHz, Chloroform-d) δ 7.61 – 7.52 (m, 8H), 7.49 – 7.28 (m, 22H), 7.21 (td, J = 7.5, 7.0, 3.0 Hz, 10H), 1.04 (t, J = 7.9 Hz, 2H), 0.88 (t, J = 7.9 Hz, 18H), 0.71 (d, J = 2.5 Hz, 6H), 0.60 (q, J = 7.9 Hz, 12H), 0.31 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 134.22, 134.12, 132.40, 131.33, 130.40, 129.19, 127.87, 127.77, 127.73, 127.68, 10.66, 9.04, 3.51, 2.56, -1.51.

²⁹Si NMR (79 MHz, CDCl₃) δ -17.81, -78.70, -79.67.

MALDI-TOF MS (m/z): calcd. for $C_{66}H_{84}Ge_2O_{14}Si_{10}Na$ 1551,19; found 1551,19.

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(

Chemical Formula: C70H76Ge2O14Si10

¹H NMR (300 MHz, Chloroform-*d*) δ 7.58 – 7.28 (m, 35H), 7.25 – 7.11 (m, 15H), 1.00 – 0.92 (m, 4H), 0.73 – 0.64 (m, 4H), 0.35 (s, 3H), 0.26 (s, 3H), 0.19 (s, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 134.20, 134.09, 133.46, 133.39, 132.27, 130.44, 128.24, 127.98, 127.91, 127.79, 10.55, 7.17, -1.34, -4.35.

 ^{29}Si NMR (79 MHz, CDCl3) δ -17.89, -78.68, -79.66.

MALDI-TOF MS (m/z): calcd. for C₇₀H₇₆Ge₂O₁₄Si₁₀Na 1591,12; found 1591,12.

¹H NMR (300 MHz, CDCl₃)

(2b)

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(

MALDI-TOF

Chemical Formula: C68H88Ge2O14Si10

¹H NMR (300 MHz, Chloroform-*d*) δ 7.58 – 7.51 (m, 8H), 7.46 – 7.30 (m, 20H), 7.25 – 7.14 (m, 12H), 1.52 – 1.41 (m, 4H), 1.01 (t, *J* = 7.9 Hz, 4H), 0.87 (t, *J* = 7.9 Hz, 18H), 0.75 – 0.66 (m, 4H), 0.55 (q, *J* = 8.0 Hz, 12H), 0.29 (s, 6H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 134.21, 134.09, 132.35, 130.40, 127.88, 127.78, 127.74, 127.70, 21.53, 18.86, 15.87, 9.07, 3.96, -0.71.

²⁹Si NMR (79 MHz, CDCl₃) δ -17.79, -78.73, -79.68.

MALDI-TOF MS (m/z): calcd. for C₆₈H₈₈Ge₂O₁₄Si₁₀Na 1579,22; found 1579,32.

¹H NMR (300 MHz, CDCl₃)

(2c)

80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(

.00

(2d) cis/trans

Chemical Formula: C72H80Ge2O14Si10

¹H NMR (300 MHz, Chloroform-*d*) δ 7.65 – 7.28 (m, 38H), 7.26 – 7.14 (m, 12H), 1.60 – 1.48 (m, 6H), 1.06 – 0.90 (m, 4H), 0.88 – 0.78 (m, 2H), 0.35 (s, 6H), 0.28 (s, 4H), 0.20 (s, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 142.03, 134.22, 134.20, 134.18, 134.16, 134.14, 134.12, 134.09, 134.07, 134.05, 133.35, 133.28, 130.55, 130.45, 128.21, 128.04, 128.01, 127.97, 127.95, 127.91, 127.88, 127.86, 127.83, 127.81, 127.78, 21.01, 19.94, 18.70, -0.72, -3.45, -3.75. ²⁹Si NMR (79 MHz, CDCl₃) δ -66.82, -67.04, -67.09, -67.32, -84.60, -84.66, -84.74, -84.81. MALDI-TOF MS (m/z): calcd. for $C_{72}H_{80}Ge_2O_{14}Si_{10}Na$ 1619,16; found 1619,15.

.00 -160 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -180 -200 -220 -240 -260 -280 -3(

MALDI-TOF

(3a-d)

(3a)

Chemical Formula: C₄₁H₉₄GeO₁₃Si₉

¹H NMR (300 MHz, CDCl₃) δ 1.92 – 1.77 (m, 8H), 1.04 – 0.90 (m, 57H), 0.70 (q, *J* = 8.0 Hz, 8H), 0.61 – 0.50 (m, 18H), 0.09 (s, 3H).

 13 C NMR (101 MHz, CDCl₃) δ 25.96, 25.95, 25.89, 25.87, 25.82, 24.25, 24.12, 24.04, 23.91, 23.25, 22.66, 10.67, 9.14, 3.59, 2.57, -1.74.

 ^{29}Si NMR (79 MHz, CDCl3) δ -22.07, -67.06, -69.18.

MALDI-TOF MS (m/z): calcd. for $C_{41}H_{94}GeO_{13}Si_9Na$ 1143,37; found 1143,37.

Chemical Formula: C43H90GeO13Si9

¹H NMR (300 MHz, CDCl₃) δ 7.50 – 7.40 (m, 2H), 7.34 (m, 3H), 1.94 – 1.75 (m, 8H), 1.02 – 0.87 (m, 50H), 0.62 – 0.52 (m, 18H), 0.35 (s, 6H), 0.09 (s, 3H).

 ^{13}C NMR (75 MHz, CDCl_3) δ 141.87, 133.44, 128.34, 128.04, 25.95, 24.11, 23.87, 23.24, 22.64, 10.57, 7.40, -1.63, -4.27.

²⁹Si NMR (79 MHz, CDCl₃) δ -22.19, -67.04, overlapping signals from silsesquioxane core (-69.11, -69.16, -69.20).

MALDI-TOF MS (m/z): calcd. for $C_{43}H_{90}GeO_{13}Si_9Na$ 1163,34; found 1163,34.

Chemical Formula: C₄₂H₉₆GeO₁₃Si₉

¹H NMR (300 MHz, CDCl₃) δ 1.92 – 1.75 (m, 8H), 1.48 – 1.39 (m, 2H), 1.01 (t, *J* = 8.0 Hz, 9H), 0.95 (dd, *J* = 6.6, 2.2 Hz, 48H), 0.78 (d, *J* = 8.7 Hz, 2H), 0.72 (q, 6H), 0.64 (d, *J* = 8.5 Hz, 2H), 0.61 – 0.52 (m, 16H), 0.09 (s, 3H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 25.96, 25.92, 25.88, 25.82, 24.26, 24.11, 24.04, 23.92, 23.27, 22.66, 21.72, 18.94, 15.99, 9.17, 4.08, -0.92.

²⁹Si NMR (79 MHz, CDCl₃) δ -22.17, -67.06, -69.16, -69.22, -69.25.

MALDI-TOF MS (m/z): calcd. for $C_{42}H_{96}GeO_{13}Si_9Na$ 1157,39; found 1157,39.

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(

Chemical Formula: C44H92GeO13Si9

¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.41 (m, 2H), 7.39 – 7.30 (m, 3H), 1.95 – 1.75 (m, 8H), 1.59 – 1.44 (m, 2H), 0.97 (dt, J = 6.6, 2.4 Hz, 50H), 0.65 – 0.51 (m, 18H), 0.36 (d, J = 7.3 Hz, 6H), 0.09 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 142.15, 133.35, 128.32, 128.05, 25.99, 25.95, 25.90, 25.85, 24.27, 24.14, 24.07, 23.90, 23.27, 21.24, 20.19, 18.82, -0.89, -3.54.

²⁹Si NMR (79 MHz, CDCl₃) δ -22.25, -67.03, -69.21.

MALDI-TOF MS (m/z): calcd. for $C_{44}H_{92}GeO_{13}Si_9Na$ 1177,36; found 1177,36.

(3d)

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -31

(5a-d)

(5a)

Chemical Formula: C₆₄H₁₅₂Ge₈O₁₂Si₈

¹H NMR (300 MHz, Chloroform-*d*) δ 1.01 (td, *J* = 8.1, 2.7 Hz, 72H), 0.90 – 0.76 (m, 18H), 0.76 – 0.66 (m, 48H), 0.66 – 0.52 (m, 14H), 0.42 – 0.18 (m, 2H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 9.19, 9.11, 5.48, 4.02, 3.59, 3.55, 1.17.

²⁹Si NMR (119 MHz, CDCl₃) δ -66.82.

HRMS (ESI): m/z calculated for $C_{64}H_{152}Ge_8O_{12}Si_8$ 1928,31; found 1929,09.

DEPT 135 NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

- 77.1600000 CDCl3

9.1949080 9.1094634

5,4787410 5,4787410 4,0217195 8,5949518 8,5544744 1,1708447

HRMS (ESI)

Chemical Formula: C₈₀H₁₂₀Ge₈O₁₂Si₈

¹H NMR (300 MHz, Chloroform-*d*) δ 7.50 – 7.37 (m, 16H), 7.36 – 7.27 (m, 24H), 1.14 – 1.03 (m, 6H), 0.97 (s, 10H), 0.80 – 0.48 (m, 16H), 0.36 (s, 48H).

 13 C NMR (101 MHz, CDCl₃) δ 141.73, 134.27, 133.46, 133.39, 128.37, 128.05, 127.97, 10.21, -4.23. 29 Si NMR (119 MHz, CDCl₃) δ -66.64.

HRMS (ESI): m/z calculated for $C_{80}H_{120}Ge_8O_{12}Si_8$ 2088,06; found 2093.

¹H NMR (300 MHz, CDCl₃)

(5b)

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -31

Chemical Formula: C72H168Ge8O12Si8

¹H NMR (300 MHz, Chloroform-*d*) δ 1.82 (d, J = 6.2 Hz, 4H), 1.65 – 1.37 (m, 16H), 1.01 (t, J = 7.9 Hz, 72H), 0.87 – 0.59 (m, 76H).

 13 C NMR (101 MHz, CDCl₃) δ 22.22, 21.10, 18.71, 16.36, 16.21, 15.04, 9.02, 8.99, 4.01, 3.95, 3.92, 3.90. 29 Si NMR (79 MHz, CDCl₃) δ -67.11, -67.35.

¹H NMR (300 MHz, CDCl₃)

(5c)

(5d)

Chemical Formula: C888H136Ge8O12Si8

¹H NMR (300 MHz, Chloroform-*d*) δ 7.75 – 7.27 (m, 40H), 1.68 – 1.32 (m, 16H), 1.13 – 0.84 (m, 16H), 0.82 – 0.53 (m, 16H), 0.35 (d, *J* = 2.9 Hz, 40H), 0.15 – -0.05 (m, 8H).

 13 C NMR (101 MHz, CDCl₃) δ 142.06, 134.15, 133.78, 133.35, 133.32, 128.71, 128.31, 128.21, 128.04, 127.86, 20.91, 20.12, 19.53, 18.71, 16.08, -3.45.

 ^{29}Si NMR (79 MHz, CDCl₃) δ -67.22.

HRMS (ESI): m/z calculated for C_{88}H_{136}Ge_8O_{12}Si_8K 2239,15, found 2239,64.

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(

(6a-d)

Chemical Formula: C₃₈H₈₈GeO₁₃Si₉

¹H NMR (300 MHz, Chloroform-*d*) δ 1.92 – 1.80 (m, 7H), 1.02 (d, 9H), 0.96 (dd, *J* = 6.6, 2.1 Hz, 42H), 0.84 – 0.77 (m, 2H), 0.71 (dq, *J* = 7.8, 1.1 Hz, 6H), 0.60 (dq, *J* = 7.1, 4.8, 4.0 Hz, 14H), 0.56 – 0.48 (m, 2H), 0.10 (s, 6H).

 ^{13}C NMR (75 MHz, CDCl_3) δ 25.85, 24.00, 22.58, 22.54, 11.50, 9.19, 3.56, 2.65, -0.89.

 ^{29}Si NMR (79 MHz, CDCl₃) δ 11.35, -67.09, -67.88, -109.58.

MALDI-TOF MS (m/z): calcd. for $C_{38}H_{88}GeO_{13}Si_9Na$ 1101,33; found 1101,33.

70 60 . 50 40 . 30 20 10 0 -10 -20 . -30 . -40 . -50 -60 . -70 . -80 . -90 -100 -110 -120

Chemical Formula: C40H84GeO13Si9

¹H NMR (300 MHz, Chloroform-*d*) δ 7.48 – 7.42 (m, 2H), 7.33 (m, 3H), 1.94 – 1.77 (m, 7H), 0.95 (dd, *J* = 6.6, 2.2 Hz, 42H), 0.60 (d, *J* = 7.1 Hz, 18H), 0.35 (s, 6H), 0.09 (s, 6H).

 ^{13}C NMR (75 MHz, CDCl_3) δ 141.84, 133.45, 128.33, 128.04, 25.85, 23.99, 22.58, 11.39, 7.64, -0.82, - 4.24.

 ^{29}Si NMR (79 MHz, CDCl_3) δ 11.40, -67.07, -67.87, -109.60.

MALDI-TOF MS (m/z): calcd. for $C_{40}H_{84}GeO_{13}Si_9Na$ 1121,29; found 1121,30.

¹H NMR (300 MHz, CDCl₃)

(6b)

					1		1	1	1	1	1	1			· · · · ·		1			1	1	-	т
15	0	140	130	1	.20	1	10	100	90	80	70	60	5	0	4	0	3	0	:	20	10		(

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(

Chemical Formula: C₃₉H₉₀GeO₁₃Si₉

¹H NMR (400 MHz, Chloroform-*d*) δ 1.93 – 1.79 (m, 7H), 1.48 – 1.39 (m, 2H), 1.01 (t, *J* = 7.9 Hz, 9H), 0.96 (dd, *J* = 6.6, 3.2 Hz, 42H), 0.81 – 0.75 (m, 2H), 0.70 (q, *J* = 7.9 Hz, 6H), 0.66 – 0.63 (m, 2H), 0.61 (t, *J* = 6.5 Hz, 14H), 0.09 (s, 6H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 25.84, 24.01, 23.98, 22.62, 22.56, 19.00, 16.08, 9.17, 4.10, -0.04.

 ^{29}Si NMR (79 MHz, CDCl_3) δ 10.76, -67.09, -67.88, -109.69.

MALDI-TOF MS (m/z): calcd. $C_{39}H_{90}GeO_{13}Si_9Na$ 1115,34; found 1115,34.

¹H NMR (400 MHz, CDCl₃)

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(

Chemical Formula: C₄₁H₈₆GeO₁₃Si₉

¹H NMR (300 MHz, Chloroform-d) δ 7.46 – 7.41 (m, 2H), 7.35 – 7.27 (m, 3H), 1.91 – 1.77 (m, 7H), 1.53 – 1.41 (m, 2H), 0.94 (d, J = 6.6 Hz, 44H), 0.59 (dd, J = 7.0, 2.5 Hz, 16H), 0.35 (s, 6H), 0.06 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 142.21, 138.01, 133.36, 129.20, 128.40, 128.31, 128.06, 125.47, 25.87, 24.05, 24.01, 22.67, 22.62, 22.58, 22.09, 20.30, 18.87, -0.03, -0.05, -3.42, -3.45. ²⁹Si NMR (79 MHz, CDCl₃) δ 10.76, -67.05, -67.84, -109.63. MALDI-TOF MS (m/z): calcd. for C₄₁H₈₆GeO₁₃Si₉Na 1135,31; found 1135,31.

¹³C NMR (101MHz, CDCl₃)

(7a-d)

Chemical Formula: C₈₀H₂₀₀Ge₈O₂₀Si₁₆

¹H NMR (300 MHz, Chloroform-*d*) δ 1.01 (t, *J* = 7.9 Hz, 72H), 0.72 (q, 48H), 0.65 – 0.48 (m, 32H), 0.12 (s, 48H).

 ^{13}C NMR (75 MHz, CDCl_3) δ 11.36, 9.16, 3.55, 2.59, -0.94.

 29 Si NMR (79 MHz, CDCl₃) δ 12.29, -108.81.

MALDI-TOF MS (m/z): calcd. for C₈₀H₂₀₀Ge₈O₂₀Si₁₆Na 2535,85;found 2535,56.

(**-**)

10 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270

MALDI-TOF

Chemical Formula: C₉₅H₁₆₈Ge₈O₂₀Si₁₆

¹H NMR (300 MHz, Chloroform-d) δ 7.46 – 7.40 (m, 16H), 7.36 – 7.28 (m, 24H), 0.92 – 0.81 (m, 15H), 0.74 – 0.68 (m, 1H), 0.63 – 0.51 (m, 16H), 0.34 (t, 48H), 0.09 (s, 48H).

 ^{13}C NMR (75 MHz, CDCl_3) δ 141.71, 133.45, 128.33, 128.04, 11.27, 7.59, -0.80, -4.22.

 ^{29}Si NMR (79 MHz, CDCl_3) δ 12.68, -108.77.

MALDI-TOF MS (m/z): calcd. for $C_{95}H_{166}Ge_8O_{20}Si_{16}$ 2666,20;found 2663,35.

(7b)

00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -31

Chemical Formula: $C_{88}H_{216}Ge_8O_{20}Si_{16}$

¹H NMR (300 MHz, CDCl₃) δ 1.50 – 1.37 (m, 16H), 1.01 (t, J = 7.9 Hz, 72H), 0.81 – 0.64 (m, 80H), 0.13 (s, 48H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 22.39, 19.00, 16.08, 9.17, 4.12, -0.06.

 ^{29}Si NMR (79 MHz, CDCl_3) δ 11.90, -108.94.

MALDI-TOF MS (m/z): calcd. for $C_{88}H_{216}Ge_8O_{20}Si_{16}Na$ 2655,58; found 2647,58.

-0.5

(7c)

¹³C NMR (101 MHz, CDCl₃)

Chemical Formula: C105H186Ge8O20Si16

¹H NMR (300 MHz, Chloroform-*d*) δ 7.49 – 7.40 (m, 15H), 7.36 – 7.28 (m, 25H), 1.53 – 1.40 (m, 16H), 1.07 – 0.95 (m, 15H), 0.66 (m, 17H), 0.35 (d, *J* = 3.6 Hz, 48H), 0.15 – 0.02 (m, 48H). ¹³C NMR (75 MHz, CDCl₃) δ 142.11, 133.33, 128.30, 128.03, 21.90, 20.26, 18.81, -0.04, -3.43. ²⁹Si NMR (79 MHz, CDCl₃) δ 12.06, -108.88. MALDI-TOF MS (m/z): calcd. for C₁₀₅H₁₈₆Ge₈O₂₀Si₁₆ 2806,35;found 2807,36.

(7d)

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(

The ¹H NMR and ¹³C NMR, ²⁹Si NMR and MALDI TOF or ESI data of products with silyl moiety 2e-f, 3e-f, 5e-f, 6e-f, 7e-f.

(2e)

Chemical Formula: C₆₆H₈₄O₁₄Si₁₂

¹H NMR (300 MHz, Chloroform-*d*) δ 7.59 – 7.50 (m, 8H), 7.48 – 7.29 (m, 19H), 7.25 – 7.15 (m, 13H), 0.77 (t, *J* = 7.9 Hz, 18H), 0.63 – 0.55 (m, 4H), 0.53 – 0.45 (m, 4H), 0.37 (q, *J* = 7.9 Hz, 12H), 0.28 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 134.22, 134.11, 132.39, 131.31, 130.39, 127.87, 127.77, 127.72, 127.67, 8.93, 7.50, 2.90, 2.15, -1.59.

 ^{29}Si NMR (79 MHz, CDCl₃) δ 8.39, -17.29, -78.72, -79.69. MALDI-TOF MS (m/z): calcd. for C_{66}H_{84}O_{14}Si_{12}Na 1459,30; found 1460,30.

Chemical Formula: C₇₀H₇₆O₁₄Si₁₂

¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 – 7.49 (m, 7H), 7.46 – 7.32 (m, 26H), 7.25 – 7.14 (m, 17H), 0.81 – 0.72 (m, 4H), 0.64 – 0.56 (m, 4H), 0.26 (s, 4H), 0.25 (s, 2H), 0.09 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 139.30, 134.23, 134.21, 134.19, 134.10, 133.71, 132.31, 131.27, 130.43, 128.80, 127.90, 127.78, 9.05, 6.55, -1.42, -3.58. ²⁹Si NMR (79 MHz, CDCl₃) δ -1.24, -17.41, -78.70, -79.68. HRMS (ESI): m/z calcd. for C₇₀H₇₆O₁₄Si₁₂ 1476,25; found 1476,70.

¹H NMR (400 MHz, CDCl₃)

(2f)

^{.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -31}

Chemical Formula: C41H94O13Si10

 ^1H NMR (300 MHz, Chloroform-d) δ 1.93 – 1.75 (m, 8H), 1.00 – 0.89 (m, 57H), 0.63 – 0.53 (m, 14H), 0.53 – 0.38 (m, 12H), 0.09 (s, 3H).

 13 C NMR (101 MHz, CDCl_3) δ 25.97, 25.90, 25.88, 25.83, 24.26, 24.13, 24.06, 23.92, 23.27, 22.67, 8.96, 7.61, 3.04, 2.14, -1.80.

²⁹Si NMR (79 MHz, CDCl₃) δ 8.37, -21.58, -67.05, -69.18, -69.23.

MALDI-TOF MS (m/z): calcd. for $C_{41}H_{94}O_{13}Si_{10}Na$ 1097,43; found 1097,42.

Chemical Formula: C₄₃H₉₀O₁₃Si₁₀

¹H NMR (300 MHz, Chloroform-*d*) δ 7.53 – 7.44 (m, 2H), 7.38 – 7.31 (m, 3H), 1.93 – 1.73 (m, 8H), 0.95 (ddd, *J* = 6.7, 3.0, 1.6 Hz, 48H), 0.78 – 0.68 (m, 2H), 0.63 – 0.52 (m, 16H), 0.50 – 0.40 (m, 2H), 0.25 (s, 6H), 0.08 (s, 3H).

 13 C NMR (101 MHz, CDCl₃) δ 139.63, 133.75, 128.89, 127.83, 25.98, 25.95, 25.88, 25.87, 25.82, 24.24, 24.11, 24.04, 23.89, 23.25, 22.66, 9.06, 6.70, -1.69, -3.44.

²⁹Si NMR (79 MHz, CDCl₃) δ -1.27, -21.72, -67.05, -69.14, -69.17, -69.22.

MALDI-TOF MS (m/z): calcd. for $C_{43}H_{90}O_{13}Si_{10}Na$ 1117,40; found 1117,39.

¹H NMR (300 MHz, CDCl₃)

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5

^{.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(}

¹H NMR (400 MHz, Chloroform-d) δ 0.93 (t, J = 7.9 Hz, 72H), 0.65 – 0.40 (m, 80H). ¹³C NMR (101 MHz, CDCl₃) δ 7.60, 4.62, 2.99, 2.45. ²⁹Si NMR (79 MHz, CDCl₃) δ 8.44, -66.34.

¹H NMR (400 MHz, CDCl₃)

(5e)

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -31

Chemical Formula: C₈₀H₁₂₀O₁₂Si₁₆

 1 H NMR (400 MHz, Chloroform-d) δ 7.53 – 7.45 (m, 17H), 7.38 – 7.27 (m, 23H), 1.10 – 0.95 (m, 8H), 0.82 - 0.71 (m, 10H), 0.60 - 0.40 (m, 14H), 0.26 (s, 48H).

¹³C NMR (101 MHz, CDCl₃) δ 139.52, 139.24, 133.92, 133.79, 133.73, 128.98, 128.92, 127.90, 127.84, 127.73, 8.98, 8.81, 7.94, 7.22, 4.63, 3.95, -3.45

²⁹Si NMR (79 MHz, CDCl₃) δ -1.20, -1.37, -66.02, -66.14, -66.18, -66.23, -66.43, -66.74, -66.98, -67.02. MALDI-TOF MS (m/z): calcd. for $C_{80}H_{120}O_{12}Si_{16}Na$ 1743,50; found 1745,50.

3.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5

¹H NMR (400 MHz, CDCl₃)

Chemical Formula: C38H88O13Si10

¹H NMR (300 MHz, Chloroform-*d*) δ 1.93 – 1.80 (m, 7H), 1.00 – 0.90 (m, 51H), 0.61 (dd, *J* = 7.1, 4.8 Hz, 14H), 0.51 (q, *J* = 7.9 Hz, 6H), 0.44 (s, 4H), 0.10 (s, 6H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 25.85, 24.01, 23.99, 22.66, 22.61, 22.57, 22.50, 21.61, 9.79, 7.64, 3.03, 2.24, -0.94.

²⁹Si NMR (79 MHz, CDCl₃) δ 11.87, 8.42, -67.09, -67.88, -109.58. MALDI-TOF MS (m/z): calcd. for C₃₈H₈₈O₁₃Si₁₀Na 1055,38; found 1055,38.

¹H NMR (300 MHz, CDCl₃)

(6e)

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -31

Chemical Formula: C₄₀H₈₄O₁₃Si₁₀

¹H NMR (300 MHz, Chloroform-*d*) δ 7.55 – 7.45 (m, 2H), 7.39 – 7.32 (m, 3H), 1.95 – 1.77 (m, 7H), 0.95 (dd, *J* = 6.6, 2.5 Hz, 42H), 0.74 – 0.64 (m, 2H), 0.60 (d, *J* = 7.0 Hz, 14H), 0.53 – 0.44 (m, 2H), 0.25 (s, 6H), 0.08 (s, 6H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 139.61, 133.78, 128.89, 127.85, 25.85, 24.01, 22.62, 9.92, 6.95, -0.88, - 3.43.

 ^{29}Si NMR (79 MHz, CDCl_3) δ 11.87, -1.29, -67.08, -67.87, -109.61.

MALDI-TOF MS (m/z): calcd. for $C_{40}H_{84}O_{13}Si_{10}Na$ 1075,35; found 1075,35.

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(

Chemical Formula: C₈₀H₂₀₀O₂₀Si₂₄

¹H NMR (300 MHz, Chloroform-*d*) δ 0.92 (t, *J* = 7.9 Hz, 72H), 0.52 (t, *J* = 8.0 Hz, 48H), 0.46 – 0.41 (m, 32H), 0.12 (s, 48H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 9.64, 7.62, 2.99, 2.18, -1.00.

 ^{29}Si NMR (79 MHz, CDCl_3) δ 12.79, 8.44, -108.82.

MALDI-TOF MS (m/z): calcd. for $C_{80}H_{200}O_{20}Si_{24}Na$ 2175,90; found 2178,89.

¹H NMR (300 MHz, CDCl₃)

(7e)

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -31

Chemical Formula: C₉₅H₁₆₈O₂₀Si₂₄

¹H NMR (300 MHz, Chloroform-*d*) δ 7.55 – 7.48 (m, 17H), 7.37 – 7.32 (m, 23H), 0.74 – 0.63 (m, 16H), 0.55 – 0.47 (m, 16H), 0.26 (s, 48H), 0.10 (s, 48H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 139.48, 133.78, 128.89, 127.85, 9.79, 6.91, -0.85, -3.38.

 ^{29}Si NMR (79 MHz, CDCl_3) δ 13.11, -1.28, -108.74.

MALDI-TOF MS (m/z): calcd. for $C_{95}H_{168}O_{20}Si_{24}K$ 2339,62; found 2338,64.

(7f)

