Supporting Information

Field-Induced Slow Magnetic Relaxation in Mixed Valence Di- and Trinuclear Co^{II}-Co^{III} Complexes

Aparup Paul,^a Marta Viciano-Chumillas,^b Horst Puschmann,^c Joan Cano,^{*,b} Subal Chandra Manna,^{*,a}

^aDepartment of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India, Email: scmanna@mail.vidyasagar.ac.in, Fax: (91) (03222) 275329.

^bInstitut de Ciència Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain ^cDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, U.K.

IR Spectral Studies

IR spectra of **1** and **2** are shown in Fig. S7 and Fig. S8, and a summary of the most important IR bands together with their tentative assignments are given in Table S5. The spectra of **1** and **2** exhibit strong bands at 3200–3600 cm⁻¹ corresponding to the v(O–H) stretching vibrations.^[i] A strong and sharp band due to azomethine v (C=N) appears at 1556 cm⁻¹ and 1551 cm⁻¹ for **1** and **2**, respectively. The strong bands at 1644 cm⁻¹ (**1**) and 1640 cm⁻¹ (**2**) are due to the anti-symmetric stretching mode of the carboxylate group, whereas the bands at 1414 cm⁻¹ (**1**) and 1413 cm⁻¹ (**2**) accord with the symmetric stretching modes of carboxylate. The bands at 2975 (**1**) and 2981 cm⁻¹ (**2**) correspond to v(C–H) (aromatic) stretching vibrations. v(C–H) (aliphatic)

stretching vibration for **1** appears at 2943 cm⁻¹. $v(C_{ring}-O_{methoxy})$ stretching vibrations occur at 1298 cm⁻¹ and 1302 cm⁻¹ for complexes **1** and **2**, respectively. The bands at 1245 (**1**) and 1248 cm⁻¹ (**2**) are ascribed to the $v(C-O_{phenolic})$ stretching vibrations.

^[i] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds; John Wiley & Sons: New York, 1997

D-H…A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<dha< th=""><th>Symmetry A</th></dha<>	Symmetry A
O(10)-H(10E)···O(1)	0.79(3)	2.17(3)	2.952(3)	170(3)	1-x,1-y,-z
O(10)-H(10E)···O(2)	0.79(3)	2.40(3)	2.881(2)	120(3)	1-x,1-y,-z
O(10)-H(10F)···O(2)	0.77(3)	2.59(3)	2.881(2)	105(3)	1-x,1-y,-z
O(10)H(10F)···O(9)	0.77(3)	2.00(3)	2.746(2)	166(4)	1-x,1-y,z

 Table S1. H-bond parameters for complex 1.

Table S2. C–H··· π interaction in complex 1.

С-Н	Cg(J)	H…Cg	X–H…Cg	X…Cg
		(Å)	(°)	(Å)
C(4)–H(4)	$Cg(7) \rightarrow C(15)-C(16)-C(17)-C(18)-C(19)-C(20)$	2.89	163	3.812(3)
C(11A)–H(11B)	$Cg(6) \rightarrow C(1)-C(2)-C(3)-C(4)-C(5)-C(6)$	2.98	148	3.852(5)
C(35A)-H(35A)	$Cg(8) \rightarrow C(23)-C(24)-C(25)-C(26)-C(27)-C(28)$	2.76	161	3.708(6)

Table S3. C–H··· π interaction in complex 2.

С-Н	Cg(J)	H…Cg	X–H…Cg	X…Cg
		(Å)	(°)	(Å)
C(18)-H(18)	$Cg6 \rightarrow C(25)-C(26)-C(27)-C(28)-C(29)C(210)$	2.82	131	3.519(5)
C(211)–H(21A)	$Cg6 \rightarrow C(25)-C(26)-C(27)-C(28)-C(29)C(210)$	2.52	143	3.356(5)

D-H···A	d(D–H)	d(H···A)	$d(D \cdots A)$	<dha< th=""><th>Symmetry A</th></dha<>	Symmetry A
O(2W)-H(2WA)···O(13)	0.90	1.77	2.654(5)	167	3/2-x,1+y,1-
					Ζ
$O(2W)-H(2WB)\cdots O(3W)$	0.79	2.14	2.874(4)	155	
O(3W)−H(3WA)···O(11)	0.85	1.89	2.731(5)	169	x,1+y,z
$O(1W)-H(1WB)\cdots O(3W)$	0.83	1.97	2.776(5)	164	
O(1W)-H(1WA)···O(21)	0.82	2.08	2.855(4)	159	

 Table S4.
 H-bond parameters for complex 2.

Table S5. Experimental IR bands (cm^{-1}) of complexes 1 and 2.

	1	2
$v(O-H)$ and $v(NH_2)$ stretching	3200-3600(br, vs)	3200-3600(br, vs)
v(C–H) stretching (aromatic rings)	2975(s)	2981(s)
v(C-H) stretching (aliphatic C-H)	2943(vw)	-
v(C=N)	1556(vs)	1551(vs)
$v_{as}(C=O)$	1644(s)	1640(s)
$v_{s}(C=O)$	1414(vs)	1413(vs)
$\nu(ArC=C)$	1466(s)	1468(s)
$\nu(C_{ring}-O_{methoxy})$	1298(vs)	1302(s)
$v_{s}(C-O_{phenolic})$	1245(w)	1248(s)
$v(C-N)_{aliphatic}$	1078(vw)	1078(s)
$\rho_r(H_2O)$	880(vw),815(vw)	860(vw),814(vw)
$\rho_{\rm w}({\rm H_2O})$	768(vw)	779(vw)

Fig.S1. 2D supramolecular structure of complex 1 through H-bonding and C-H $\cdots\pi$ interactions, disordered atoms are omitted for clarity.

Fig.S2. Simplified mononuclear models built from experimental geometries of 1 (a) and 2 (b).

Fig.S3. Frequency dependences of $\chi_{\rm M}$ ' (a) and $\chi_{\rm M}$ '' (b) and Argand plots (c) for 1 (left) and 2 (right) in a dc-applied static field of 1.0 kG with \pm 5.0 G oscillating field in the temperature range of 2.0–6.5 (1) and 2.0–8.5 K (2) from grey to warmer colours in steps of 0.25 K below 5.0 K for 1 and 5.5 K for 2 and 0.50 K above these temperatures. The solid lines are the best-fit curves simulated using the values of $\chi_{\rm S}$, $\chi_{\rm T}$, τ and α shown in Figures 4 and S6.

Fig.S4. Frequency dependences of χ_{M} ' (a) and χ_{M} '' (b) and Argand plots (c) for **1** (left) and **2** (right) in a dc-applied static field of 2.5 kG with \pm 5.0 G oscillating field in the temperature range of 2.0–9.0 (**1**) and 2.0–9.5 K (**2**) from grey to warmer colours in steps of 0.25 K below 5.0 K for **1** and 5.5 K for **2** and 0.50 K above these temperatures. The solid lines are the best-fit curves simulated using the values of χ_{S} , χ_{T} , τ and α shown in Figures 4 and S6.

Fig.S5. Frequency dependences of $\chi_{\rm M}$ ' (a) and $\chi_{\rm M}$ '' (b) and Argand plots (c) for 1 (left) and 2 (right) in a dc-applied static field of 5.0 kG with \pm 5.0 G oscillating field in the temperature range of 2.0–8.5 (1) and 2.0–9.5 K (2) from grey to warmer colours in steps of 0.25 K below 5.0 K for 1 and 5.5 K for 2 and 0.50 K above these temperatures. The solid lines are the best-fit curves simulated using the values of $\chi_{\rm S}$, $\chi_{\rm T}$, τ and α shown in Figures 4 and S6.

Fig.S6. Temperature dependence of α (a), χ_s (b), and χ_T (c) of **1** (left) and **2** (right) under applied dc magnetic field of 1.0, 2.5 and 5.0 kG. The solid lines are eye-guides. Standard deviations appear as vertical error bars.

Fig.S7. IR spectrum of 1.

