New Polymorphism for $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ with Two Polymorphs
Crystallizing in the Same Space Group
Zhen Qian, ${ }^{a}$ Hongping Wu, ${ }^{a}$ Hongwei Yu, ${ }^{a^{*}}$ Zhanggui Hu, ${ }^{a}$ Jiyang Wang, ${ }^{a}$ and Yicheng Wu ${ }^{a}$
${ }^{a}$ Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
CONTENTS

1. Table $S 1$ (Crystal data and structure refinement) S4
2. Table $\mathbf{S 2}$ (Crystal data and structure refinement at low temperature) 55
3. Table S3 (Atomic coordinates, displacement parameters and BVS) S6
4. Table S4 (Selected bond distances and angles) S7
5. Table $\mathrm{S5}$ (The Ba^{2+} cations coordinated and $\mathrm{Ba}-\mathrm{O}$ bonds in α - and β - $\left.\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}\right)$ S12
6. Figure S 1 (IR spectra for α - and $\left.\boldsymbol{\beta}-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}\right)$ S13
7. Figure $\mathbf{S 2}$ (The UV-Vis-NIR diffuse reflectance spectra for α - and β - $\left.\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}\right)$ S14
8. Figure $\mathbf{S 3}$ (The TGA curves of α - and β - $\left.\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}\right)$ S15
9. Figure S 4 (The $\mathrm{P}-\mathrm{XRD}$ of $\alpha-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ after heating at $650{ }^{\circ} \mathrm{C}$) S16

Experimental Section

Caution: Hydrofluoric acid is toxic and corrosive! It must be handled with extreme caution and the appropriate protective equipment and training.

Materials

$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Tianjin Fu Chen Chemical Co., Ltd., 99.5\%), TiO_{2} (Tianjin Fu Chen Chemical Co., Ltd., 99\%), HIO_{3} (Alfa Aesar, 99.5\%), HF (Tianjin Fu Chen Chemical Co., Ltd., 40\%) were used as received.

Hydrothermal Syntheses

α - and β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ were both synthesized by the hydrothermal methods with the same starting materials and the same temperature program. The difference is that β $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ was synthesized without mineralizers whereas $\alpha-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ was synthesized with 0.5 ml HF as the mineralizer. For α - and β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}, 0.200 \mathrm{~g}(0.82$ $\left.\times 10^{-3} \mathrm{~mol}\right)$ of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 0.200 \mathrm{~g}\left(2.50 \times 10^{-3} \mathrm{~mol}\right)$ of $\mathrm{TiO}_{2}, 1.400 \mathrm{~g}\left(7.96 \times 10^{-2} \mathrm{~mol}\right)$ of HIO_{3} were combined with $5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$, and 0.5 ml HF were combined with 5 mL of $\mathrm{H}_{2} \mathrm{O}$ to $\alpha-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$. The solutions were placed in 23 -mL Teflon-lined autoclaves and subsequently sealed. The autoclaves were gradually heated to $220^{\circ} \mathrm{C}$, hold for 3 d , and cooled slowly to room temperature at a rate of $5{ }^{\circ} \mathrm{C} / \mathrm{h}$. The mother liquor was decanted from the products. The products were recovered by filtration and washed with water. The white stripe crystals were found in 90% and 85% yield for α - and β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ based on $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, respectively.

Crystallographic Determination

Two transparent colorless bulk single crystals of α - and β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ with dimensions of $0.065 \times 0.086 \times 0.102$ and $0.061 \times 0.078 \times 0.097 \mathrm{~mm}^{3}$ were selected for the singlecrystal structural determination. The diffraction data collection was carried out on a Bruker D8 VENTURE CMOS X-ray source with Mo K α radiation $(\lambda=0.71073 \AA$) at 293(2) K. Data collection and reduction were performed using the APEX II software, and absorption corrections were acquired based on a multiscan-type model. ${ }^{1}$ The crystal structure was solved by direct methods and refined on F^{2} by full-matrix least-squares methods using the SHELXTL-97 software package. ${ }^{2}$ All nonhydrogen atoms were refined with the anisotropic displacement parameters. The absolute structure was examined for missing symmetry elements using PLATON, ${ }^{3}$ and none were found.

Crystal data and structural refinement information for α - and $\beta-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ are summarized in Table S1. Atomic coordinates and equivalent isotropic displacement parameters as well as calculated bond valence sums (BVS) for α - and β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ are collected in Table S2. Selected bond distances are given in Table S3.

Powder X-ray Diffraction

The phase purity of α - and β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ were confirmed by using powder X-ray diffraction (PXRD). This study was performed at room temperature on a SmartLab9KW X-ray diffractometer at room temperature ($\mathrm{Cu}-\mathrm{K} \alpha$ radiation). Data was collected in the 2θ range of $10-70^{\circ}$ with a step size of 0.01° and a step time of 2 s . As seen in Figure 1, the polycrystalline XRD pattern of title compound is in good agreement with the calculated.

Infrared Spectroscopy

The infrared spectra of α - and β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ were recorded on a Nicolet iS50 FT-IR spectrometer in the range $500-3500 \mathrm{~cm}^{-1}$. The sample of $\sim 10 \mathrm{mg}$ was placed on the test platform for testing.

The UV-vis-NIR Diffuse Reflectance Spectra

The diffuse reflectance spectra of the α - and $\beta-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ powder samples were measured with a Shimadzu SolidSpec-3700DUV UV/Vis/NIR Spectrophotometer at room temperature in the measurement range from 240 to 2000 nm . Barium sulfate was used as a diffuse reflectance standard.

Thermal Analysis

The thermal analyses were carried out on NETZSCH STA 449C thermal analyzer instrument in an atmosphere of flowing N_{2}. The measurement temperatures range from 30 to $800{ }^{\circ} \mathrm{C}$ for α - and β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$. The heating and cooling rate are $5^{\circ} \mathrm{C} / \mathrm{min}$.

Reference

1. R. H. Blessing, Acta Crystallographica Section A., 1995, 51, 33.
2. G. M. Sheldrick, SHELXS-97: Program for the Solution of Crystal Structures, University of Göttingen: Germany, 1997.
3. A. L. Spek, Single-crystal Structure Validation with the Program PLATON, J. Appl. Crystallogr., 2003, 36, 7.

Empirical formula	$\alpha-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$	$\beta-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$
Formula weight	$1234.64 \mathrm{~g} / \mathrm{mol}$	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Trigonal	
space group	$R-3 c$	
Unit cell dimensions	$\begin{aligned} & a=10.9589(7) \AA, \\ & c=11.1331(10) \AA \end{aligned}$	$\begin{aligned} & a=11.4412(17) \AA, \\ & c=11.1418(17) \AA, \end{aligned}$
Z, Volume	1,1157.93(18) \AA^{3}	3,1263.1(4) \AA^{3}
Density ($\mathrm{g} / \mathrm{cm}^{3}$)	5.312	5.177
Absorption coefficient (mm^{-1})	15.150	18.310
$F(000)$	1620	1668
Theta range for data collection	2.82 to 27.49°	2.75 to 27.50°
	$-14 \leq h \leq 9$	$-14 \leq h \leq 14$
	$-11 \leq \mathrm{k} \leq 14$	$-14 \leq \mathrm{k} \leq 14$
Limiting indices	$-14 \leq 1 \leq 14$	$-14 \leq 1 \leq 14$
Reflections collected	2964	9462
Completeness to theta	100 \%	100 \%
Refinement method	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}
Data / restraints / parameters	601 / 0 / 41	646 / 0 / 42
Goodness-of-fit on F^{2}	0.712	1.038
Final R indices $\left[F_{o}{ }^{2}>2 \mathrm{~s}\left(F_{o}{ }^{2}\right)\right]^{[a]}$	$\begin{aligned} & R_{1}=0.0232, \\ & w R_{2}=0.0751 \end{aligned}$	$\begin{aligned} & R_{1}=0.0258 \\ & w R_{2}=0.1145 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0261 \\ & w R_{2}=0.0824 \end{aligned}$	$\begin{aligned} & R_{1}=0.0287 \\ & w R_{2}=0.1187 \end{aligned}$
Largest diff. peak and hole (e $\cdot \AA^{-3}$)	1.016 and -2.575	1.372 and -1.741

[^0]Table S2. Crystal data and structure refinement for α - and β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ at low temperature.

Empirical formula	$\alpha-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$	$\beta-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$
Formula weight	$1234.64 \mathrm{~g} / \mathrm{mol}$	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Trigonal	
space group	$R-3 c$	
Unit cell dimensions	$\begin{aligned} & a=10.9180(5) \AA \\ & c=11.0808(6) \AA \end{aligned}$	$\begin{aligned} & a=11.3909(6) \AA, \\ & c=11.1056(7) \AA, \end{aligned}$
Z, Volume	3,1143.90(12) \AA^{3}	3, 1247.93(15) \AA^{3}
Density ($\mathrm{g} / \mathrm{cm}^{3}$)	5.377	4.929
Absorption coefficient (mm^{-1})	15.336	14.057
$F(000)$	1620	1620
Theta range for data collection	2.832 to 27.471°	2.762 to 27.454°
	$-12 \leq h \leq 13$	$-14 \leq \mathrm{h} \leq 14$
	$-14 \leq \mathrm{k} \leq 13$	$-14 \leq \mathrm{k} \leq 14$
Limiting indices	$-14 \leq \mathrm{k} \leq 14$	$-14 \leq 1 \leq 14$
Reflections collected	3924	4208
Completeness to theta	100 \%	100 \%
Refinement method	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}
Data / restraints / parameters	$584 / 0$ / 31	641 / 0 / 42
Goodness-of-fit on F^{2}	0.746	1.156
Final R indices $\left[F_{o}{ }^{2>} 2 \mathrm{~s}\left(F_{o}{ }^{2}\right)\right]^{[a]}$	$\begin{aligned} & R_{1}=0.0179 \\ & w R_{2}=0.0773 \end{aligned}$	$\begin{aligned} & R_{1}=0.0317 \\ & w R_{2}=0.1348 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0212 \\ & w R_{2}=0.0871 \end{aligned}$	$\begin{aligned} & R_{1}=0.0342 \\ & w R_{2}=0.1373 \end{aligned}$
Largest diff. peak and hole (e $\cdot \AA^{-3}$)	0.859 and -1.031	3.285 and -2.689

Table S3a. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\alpha-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6} \mathrm{U}_{\text {eq }}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	y	z	U_{eq}	BVS
Ba1	0	0	0.5	$10(2)$	2.462
Ti1	3333	6666	6666	$11(5)$	4.173
I1	$1146(3)$	$4079(3)$	$4557(3)$	$10(2)$	5.011
O1	$1681(4)$	$5521(4)$	$5675(3)$	$12(7)$	2.167
O2	$1271(4)$	$2875(4)$	$5550(3)$	$15(8)$	2.084
O3	$2740(4)$	$4702(4)$	$3690(4)$	$17(8)$	1.871

Table S3b. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6} \mathrm{U}_{\text {eq }}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	y	z	U_{eq}	BVS
Ba1	0	0	$0.38009(19)$	$0.0234(4)$	2.21
Ti1	0.333333	0.666667	0.666667	$0.0134(7)$	4.355
I1	$0.07188(4)$	$0.35479(4)$	$0.55802(4)$	$0.0118(3)$	4.988
O1	$0.0956(6)$	$0.2878(6)$	$0.6972(5)$	$0.0242(12)$	1.823
O2	$0.1224(5)$	$0.2718(6)$	$0.4524(5)$	$0.0182(11)$	2.132
O3	$0.2379(5)$	$0.5135(5)$	$0.5609(6)$	$0.0206(12)$	2.202

Table S4a. Selected bond distances (\AA) and angles (deg) for $\alpha-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$.

Ba1-O2	2.802(4)	O2-Ba1-O3	124.38(10)
Ba1-O2	2.802(4)	O2-Ba1-O3	124.38(10)
Ba1-O2	2.802(4)	O2-Ba1-O3	117.19(10)
Ba1-O2	2.802(4)	O2-Ba1-O3	66.90(10)
Ba1-O2	2.802(4)	O2-Ba1-O3	55.62(10)
Bal-O2	2.802(4)	O2-Ba1-O3	62.81(10)
Ba1-O3	2.955(4)	O2-Ba1-O3	113.10(10)
Ba1-O3	2.955(4)	O3-Ba1-O3	180
Ba1-O3	2.955(4)	O2-Ba1-O3	66.90(10)
Ba1-O3	2.955(4)	O2-Ba1-O3	124.38(10)
Ba1-O3	2.955(4)	O2-Ba1-O3	62.81(10)
Ba1-O3	2.955(4)	O3-Ba1-O3	111.82(12)
Ti1-O1	1.950(3)	O2-Ba1-O3	113.10(10)
Ti1-O1	1.950(3)	O2-Ba1-O3	55.62(10)
Ti1-O1	1.950(4)	O2-Ba1-O3	117.19(10)
Ti1-O1	1.950(4)	O3-Ba1-O3	68.18(12)
Ti1-O1	1.950(3)	O2-Ba1-O3	62.81(10)
I1-O1	1.860(4)	O2-Ba1-O3	66.90(10)
I1-O2	1.779(3)	O2-Ba1-O3	55.62(10)
I1-O3	1.805(4)	O3-Ba1-O3	111.82(12)
O2-Ba1-O2	180	O3-Ba1-O3	111.82(12)
O2-Ba1-O2	115.36(5)	O2-Ba1-O3	62.81(10)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2$	64.64(5)	O2-Ba1-O3	66.90(10)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2$	64.64(5)	O2-Ba1-O3	55.62(10)
O2-Ba1-O2	115.36(5)	O3-Ba1-O3	68.18(12)
O2-Ba1-O2	115.36(5)	O3-Ba1-O3	68.18(12)
O2-Ba1-O2	64.64(5)	O3-Ba1-O3	68.18(12)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2$	180.00(14)	O3-Ba1-O3	68.18(12)

O2-Ba1-O2	$64.64(5)$	O2-Ba1-O3	$117.19(10)$
O2-Ba1-O2	$115.36(5)$	O2-Ba1-O3	$113.10(10)$
O2-Ba1-O2	180	O2-Ba1-O3	$124.38(10)$
O2-Ba1-O2	$115.36(5)$	O3-Ba1-O3	$111.82(12)$
O2-Ba1-O2	$64.64(5)$	O3-Ba1-O3	$111.82(12)$
O2-Ba1-O2	$64.64(5)$	O3-Ba1-O3	180
O2-Ba1-O2	$115.36(5)$	O2-I1-O3	$101.18(17)$
O2-Ba1-O3	$55.62(10)$	O3-I1-O1	$101.67(16)$
O2-Ba1-O3	$62.81(10)$	O2-I1-O1	$96.12(16)$
O2-Ba1-O3	$113.10(10)$	O1-Ti1-O1	$91.08(14)$
O2-Ba1-O3	$124.38(10)$	O1-Ti1-O1	$88.93(14)$
O2-Ba1-O3	$117.19(10)$	O1-Ti1-O1	$88.93(14)$
O2-Ba1-O3	$66.90(10)$	O1-Ti1-O1	$91.08(14)$
O2-Ba1-O3	$113.10(10)$	O1-Ti1-O1	$91.08(14)$
O2-Ba1-O3	$55.62(10)$	O1-Ti1-O1	$88.92(14)$
O2-Ba1-O3	$117.19(10)$	O1-Ti1-O1	180
O3-Ba1-O3	$68.18(12)$	O1-Ti1-O1	180
O2-Ba1-O3	$66.90(10)$	O1-Ti1-O1	$88.92(14)$
O2-Ba1-O3	$124.38(10)$	O1-Ti1-O1	$91.08(14)$
O2-Ba1-O3	$62.81(10)$	O1-Ti1-O1	$88.92(14)$
O3-Ba1-O3	$111.82(12)$	O1-Ti1-O1	180
O3-Ba1-O3	180	O1-Ti1-O1	$91.08(14)$
O2-Ba1-O3	$117.19(10)$	O1-Ti1-O1	$91.07(14)$
O2-Ba1-O3	$113.10(10)$	O1-Ti1-O1	$88.92(14)$

Table S4b. Selected bond distances (\AA) and angles (deg) for β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$.

Bal-O1	3.031(5)	O2-Ba1-O2	112.05(9)
$\mathrm{Ba} 1-\mathrm{O} 1$	3.031(5)	O2-Ba1-O1	172.64(13)
$\mathrm{Ba} 1-\mathrm{O} 1$	3.031(5)	O2-Ba1-O1	61.31(13)
$\mathrm{Ba} 1-\mathrm{O} 2$	3.268(5)	O2-Ba1-O1	61.31(13)
$\mathrm{Ba} 1-\mathrm{O} 2$	3.268(5)	O2-Ba1-O1	74.47(13)
$\mathrm{Ba} 1-\mathrm{O} 2$	3.268(5)	O2-Ba1-O1	61.31(13)
$\mathrm{Ba} 1-\mathrm{O} 2$	2.805(5)	O1-Ba1-O1	112.37(8)
$\mathrm{Ba} 1-\mathrm{O} 2$	2.805(5)	O2-Ba1-O2	128.52(10)
$\mathrm{Ba} 1-\mathrm{O} 2$	2.805(5)	O1-Ba1-O2	117.41(12)
Ti1-O3	1.939(4)	O1-Ba1-O2	129.98(12)
Ti1-O3	1.939(4)	O2-Ba1-O2	56.10(5)
Ti1-O3	1.939(4)	O2-Ba1-O2	128.52(10)
Ti1-O3	1.939(4)	O1-Ba1-O2	117.41(12)
Ti1-O3	1.939(4)	O2-Ba1-O2	90.75(12)
Ti1-O3	1.939(4)	O2-Ba1-O2	128.52(10)
I1-O1	1.804(5)	O2-Ba1-O2	56.10(5)
I1-O2	1.788(4)	O1-Ba1-O2	129.98(12)
I1-O3	1.857(5)	O2-Ba1-O2	90.75(12)
O2-Ba1-O2	112.05(9)	O3-Ti1-O3	180
O2-Ba1-O2	112.05(9)	O3-Ti1-O3	86.8(2)
O2-Ba1-O1	74.47(13)	O3-Ti1-O3	86.8(2)
O2-Ba1-O1	172.64(13)	O3-Ti1-O3	86.8(2)
O1-Ba1-O1	112.37(8)	O3-Til-O3	93.2(2)
O2-Ba1-O1	74.47(13)	O3-Ti1-O3	86.8(2)
O2-Ba1-O1	172.64(13)	O3-Ti1-O3	180
O1-Ba1-O1	112.37(8)	O3-Ti1-O3	86.8(2)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2$	56.10(5)	O3-Ti1-O3	93.2(2)
O2-Ba1-O2	56.10(5)	O3-Til-O3	93.2(2)

$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2$	$51.63(12)$	$\mathrm{O} 3-\mathrm{Ti} 1-\mathrm{O} 3$	$86.8(2)$
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2$	$56.10(5)$	O3-Ti1-O3	$93.2(2)$
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2$	$129.98(12)$	$\mathrm{O} 3-\mathrm{Ti} 1-\mathrm{O} 3$	180
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2$	$51.63(12)$	O3-Ti1-O3	$93.2(2)$
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2$	$56.10(5)$	O3-Ti1-O3	$93.2(2)$
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2$	$51.63(12)$	O2-I1-O1	$100.0(2)$
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2$	$117.41(12)$	$\mathrm{O} 1-\mathrm{I} 1-\mathrm{O} 3$	$95.6(2)$
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2$	$90.75(12)$	$\mathrm{O} 2-\mathrm{I} 1-\mathrm{O} 3$	$94.9(2)$

Table S5. The Ba^{2+} cations coordinated and $\mathrm{Ba}-\mathrm{O}$ bonds in α - and β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$.

	α - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$	β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$	
$\mathrm{Ba} 1-\mathrm{O} 2$	$2.802(4) \AA$	$\mathrm{Ba} 1-\mathrm{O} 1$	$3.031(5) \AA$
$\mathrm{Ba} 1-\mathrm{O} 2$	$2.802(4) \AA$	$\mathrm{Ba} 1-\mathrm{O} 1$	$3.031(5) \AA$
$\mathrm{Ba} 1-\mathrm{O} 2$	$2.802(4) \AA$	$\mathrm{Ba} 1-\mathrm{O} 1$	$3.031(5) \AA$
$\mathrm{Ba} 1-\mathrm{O} 2$	$2.802(4) \AA$	$\mathrm{Ba} 1-\mathrm{O} 2$	$3.268(5) \AA$
$\mathrm{Ba} 1-\mathrm{O} 2$	$2.802(4) \AA$	$\mathrm{Ba} 1-\mathrm{O} 2$	$3.268(5) \AA$
$\mathrm{Ba} 1-\mathrm{O} 2$	$2.802(4) \AA$	$\mathrm{Ba} 1-\mathrm{O} 2$	$3.268(5) \AA$
$\mathrm{Ba} 1-\mathrm{O} 3$	$2.955(4) \AA$	$\mathrm{Ba} 1-\mathrm{O} 2$	$2.805(5) \AA$
$\mathrm{Ba} 1-\mathrm{O} 3$	$2.955(4) \AA$	$\mathrm{Ba} 1-\mathrm{O} 2$	$2.805(5) \AA$
$\mathrm{Ba} 1-\mathrm{O} 3$	$2.955(4) \AA$	$\mathrm{Ba} 1-\mathrm{O} 2$	$2.805(5) \AA$
$\mathrm{Ba} 1-\mathrm{O} 3$	$2.955(4) \AA$		
$\mathrm{Ba} 1-\mathrm{O} 3$	$2.955(4) \AA$		
$\mathrm{Ba} 1-\mathrm{O} 3$	$2.955(4) \AA$		
$(\mathrm{Ba})-(\mathrm{O})_{\text {average }} \AA$	$2.878 \AA$	$(\mathrm{Ba})-(\mathrm{O})_{\text {average }} \AA$	$3.035 \AA$

Figure S1. IR spectra for (a) α - and (b) $\beta-\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$.

Figure S2. The UV-Vis-NIR diffuse reflectance spectra for (a) α - and (b) β $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$.

Figure S3. Thermogravimetric analysis diagram for (a) α - and (b) β - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$.

Figure S4. α - $\mathrm{BaTi}\left(\mathrm{IO}_{3}\right)_{6}$ decomposes above $650{ }^{\circ} \mathrm{C}$ to a mixture of $\mathrm{Ba}_{5}\left(\mathrm{IO}_{6}\right)_{2}$ and TiO_{2}.

[^0]: ${ }^{[a]} R_{l}=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| \Sigma\left|F_{o}\right|$ and $w R_{2}=\left[\Sigma w\left(F_{o}^{2}-F_{c}^{2}\right)^{2} / \Sigma w F_{o}^{4}\right]^{1 / 2}$ for $F_{o}^{2}>2 \sigma\left(F_{o}^{2}\right)$

