# New Polymorphism for BaTi(IO<sub>3</sub>)<sub>6</sub> with Two Polymorphs

## Crystallizing in the Same Space Group

Zhen Qian,<sup>*a*</sup> Hongping Wu,<sup>*a*</sup> Hongwei Yu,<sup>*a*</sup>\* Zhanggui Hu,<sup>*a*</sup> Jiyang Wang, <sup>*a*</sup> and Yicheng Wu<sup>*a*</sup> <sup>*a*</sup>Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.

## **CONTENTS**

| 1. | Table S1 (Crystal data and structure refinement)   S4                                         |
|----|-----------------------------------------------------------------------------------------------|
| 2. | Table S2 (Crystal data and structure refinement at low temperature)S5                         |
| 3. | Table S3 (Atomic coordinates, displacement parameters and BVS)                                |
| 4. | Table S4 (Selected bond distances and angles)                                                 |
| 5. | Table S5 (The Ba <sup>2+</sup> cations coordinated and Ba-O bonds in $\alpha$ - and $\beta$ - |
|    | BaTi(IO <sub>3</sub> ) <sub>6</sub> )S12                                                      |
| 6. | Figure S1 (IR spectra for α- and β-BaTi(IO <sub>3</sub> ) <sub>6</sub> )S13                   |
| 7. | Figure S2 (The UV-Vis-NIR diffuse reflectance spectra for $\alpha$ - and $\beta$ -            |
|    | BaTi(IO <sub>3</sub> ) <sub>6</sub> )                                                         |
| 8. | Figure S3 (The TGA curves of $\alpha$ - and $\beta$ -BaTi(IO <sub>3</sub> ) <sub>6</sub> )S15 |
| 9. | Figure S4 (The P-XRD of α-BaTi(IO <sub>3</sub> ) <sub>6</sub> after heating at 650 °C)S16     |

### **Experimental Section**

*Caution: Hydrofluoric acid is toxic and corrosive! It must be handled with extreme caution and the appropriate protective equipment and training.* 

#### Materials

BaCl<sub>2</sub>·2H<sub>2</sub>O (Tianjin Fu Chen Chemical Co., Ltd., 99.5%), TiO<sub>2</sub> (Tianjin Fu Chen Chemical Co., Ltd., 99%), HIO<sub>3</sub> (Alfa Aesar, 99.5%), HF (Tianjin Fu Chen Chemical Co., Ltd., 40%) were used as received.

#### **Hydrothermal Syntheses**

α- and β-BaTi(IO<sub>3</sub>)<sub>6</sub> were both synthesized by the hydrothermal methods with the same starting materials and the same temperature program. The difference is that β-BaTi(IO<sub>3</sub>)<sub>6</sub> was synthesized without mineralizers whereas α-BaTi(IO<sub>3</sub>)<sub>6</sub> was synthesized with 0.5 ml HF as the mineralizer. For α- and β-BaTi(IO<sub>3</sub>)<sub>6</sub>, 0.200 g (0.82 × 10<sup>-3</sup> mol) of BaCl<sub>2</sub>·2H<sub>2</sub>O, 0.200 g (2.50 × 10<sup>-3</sup> mol) of TiO<sub>2</sub>, 1.400 g (7.96 × 10<sup>-2</sup> mol) of HIO<sub>3</sub> were combined with 5ml H<sub>2</sub>O, and 0.5 ml HF were combined with 5 mL of H<sub>2</sub>O to α-BaTi(IO<sub>3</sub>)<sub>6</sub>. The solutions were placed in 23-mL Teflon-lined autoclaves and subsequently sealed. The autoclaves were gradually heated to 220 °C, hold for 3 d, and cooled slowly to room temperature at a rate of 5 °C/h. The mother liquor was decanted from the products. The products were found in 90% and 85% yield for α- and β-BaTi(IO<sub>3</sub>)<sub>6</sub> based on BaCl<sub>2</sub>·2H<sub>2</sub>O, respectively.

#### **Crystallographic Determination**

Two transparent colorless bulk single crystals of  $\alpha$ - and  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub> with dimensions of 0.065 x 0.086 x 0.102 and 0.061 x 0.078 x 0.097 mm<sup>3</sup> were selected for the singlecrystal structural determination. The diffraction data collection was carried out on a Bruker D8 VENTURE CMOS X-ray source with Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at 293(2) K. Data collection and reduction were performed using the APEX II software, and absorption corrections were acquired based on a multiscan-type model.<sup>1</sup> The crystal structure was solved by direct methods and refined on  $F^2$  by full-matrix least-squares methods using the SHELXTL-97 software package.<sup>2</sup> All nonhydrogen atoms were refined with the anisotropic displacement parameters. The absolute structure was examined for missing symmetry elements using PLATON,<sup>3</sup> and none were found. Crystal data and structural refinement information for  $\alpha$ - and  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub> are summarized in Table S1. Atomic coordinates and equivalent isotropic displacement parameters as well as calculated bond valence sums (BVS) for  $\alpha$ - and  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub> are collected in Table S2. Selected bond distances are given in Table S3.

#### **Powder X-ray Diffraction**

The phase purity of  $\alpha$ - and  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub> were confirmed by using powder X-ray diffraction (PXRD). This study was performed at room temperature on a SmartLab9KW X-ray diffractometer at room temperature (Cu-K $\alpha$  radiation). Data was collected in the 2 $\theta$  range of 10-70° with a step size of 0.01° and a step time of 2 s. As seen in Figure 1, the polycrystalline XRD pattern of title compound is in good agreement with the calculated.

### **Infrared Spectroscopy**

The infrared spectra of  $\alpha$ - and  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub> were recorded on a Nicolet iS50 FT-IR spectrometer in the range 500-3500 cm<sup>-1</sup>. The sample of ~10 mg was placed on the test platform for testing.

#### The UV-vis-NIR Diffuse Reflectance Spectra

The diffuse reflectance spectra of the  $\alpha$ - and  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub> powder samples were measured with a Shimadzu SolidSpec-3700DUV UV/Vis/NIR Spectrophotometer at room temperature in the measurement range from 240 to 2000 nm. Barium sulfate was used as a diffuse reflectance standard.

#### **Thermal Analysis**

The thermal analyses were carried out on NETZSCH STA 449C thermal analyzer instrument in an atmosphere of flowing N<sub>2</sub>. The measurement temperatures range from 30 to 800 °C for  $\alpha$ - and  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub>. The heating and cooling rate are 5 °C/min. *Reference* 

- 1. R. H. Blessing, Acta Crystallographica Section A., 1995, 51, 33.
- 2. G. M. Sheldrick, SHELXS-97: *Program for the Solution of Crystal Structures*, University of Göttingen: Germany, 1997.
- 3. A. L. Spek, Single-crystal Structure Validation with the Program PLATON, *J. Appl. Crystallogr.*, 2003, **36**, 7.

| <b>Table S1.</b> Crystal data and structure refinement for $\alpha$ - and $\beta$ -BaTi(IO <sub>3</sub> ) <sub>6</sub> . |                                         |                                                        |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|--|--|--|--|
| Empirical formula                                                                                                        | α-BaTi(IO <sub>3</sub> ) <sub>6</sub>   | β-BaTi(IO <sub>3</sub> ) <sub>6</sub>                  |  |  |  |  |
| Formula weight                                                                                                           | 1234.64 g                               | g/mol                                                  |  |  |  |  |
| Temperature                                                                                                              | 293(2)                                  | K                                                      |  |  |  |  |
| Wavelength                                                                                                               | 0.7107.                                 | 3 Å                                                    |  |  |  |  |
| Crystal system                                                                                                           | Trigor                                  | nal                                                    |  |  |  |  |
| space group                                                                                                              | R-3c                                    |                                                        |  |  |  |  |
| Unit cell dimensions                                                                                                     | a = 10.9589(7) Å,<br>c = 11.1331(10) Å, | <i>a</i> = 11.4412(17) Å,<br><i>c</i> = 11.1418(17) Å, |  |  |  |  |
| Z, Volume                                                                                                                | 1, 1157.93(18) Å <sup>3</sup>           | 3, 1263.1(4) Å <sup>3</sup>                            |  |  |  |  |
| Density (g/cm <sup>3</sup> )                                                                                             | 5.312                                   | 5.177                                                  |  |  |  |  |
| Absorption coefficient (mm <sup>-1</sup> )                                                                               | 15.150                                  | 18.310                                                 |  |  |  |  |
| F (000)                                                                                                                  | 1620                                    | 1668                                                   |  |  |  |  |
| Theta range for data collection                                                                                          | 2.82 to 27.49°                          | 2.75 to 27.50°                                         |  |  |  |  |
|                                                                                                                          | $-14 \le h \le 9$                       | $-14 \le h \le 14$                                     |  |  |  |  |
|                                                                                                                          | $-11 \le k \le 14$                      | $-14 \le k \le 14$                                     |  |  |  |  |
| Limiting indices                                                                                                         | $-14 \le 1 \le 14$                      | $-14 \le 1 \le 14$                                     |  |  |  |  |
|                                                                                                                          |                                         |                                                        |  |  |  |  |
| Reflections collected                                                                                                    | 2964                                    | 9462                                                   |  |  |  |  |
| Completeness to theta                                                                                                    | 100 %                                   | 100 %                                                  |  |  |  |  |
| Refinement method                                                                                                        | Full-matrix least-<br>squares on $F^2$  | Full-matrix least-squares on $F^2$                     |  |  |  |  |
| Data / restraints / parameters                                                                                           | 601 / 0 / 41                            | 646 / 0 / 42                                           |  |  |  |  |
| Goodness-of-fit on $F^2$                                                                                                 | 0.712                                   | 1.038                                                  |  |  |  |  |
| Einel D indices $[E^2 > 2s(E^2)]^{[a]}$                                                                                  | $R_1 = 0.0232,$                         | $R_1 = 0.0258,$                                        |  |  |  |  |
| Final K mulces $[F_0^2 > 28(F_0^2)]^{\text{rs}}$                                                                         | $wR_2 = 0.0751$                         | $wR_2 = 0.1145$                                        |  |  |  |  |
| <i>R</i> indices (all data)                                                                                              | $R_1 = 0.0261,$                         | $R_1 = 0.0287,$                                        |  |  |  |  |
|                                                                                                                          | $wR_2 = 0.0824$                         | $wR_2 = 0.1187$                                        |  |  |  |  |
| Largest diff. peak and hole $(e \cdot Å^{-3})$                                                                           | 1.016 and -2.575                        | 1.372 and -1.741                                       |  |  |  |  |

<sup>[a]</sup>  $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$  and  $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2}$  for  $F_o^2 > 2\sigma (F_o^2)$ 

| Empirical formula                                  | $\alpha$ -BaTi(IO <sub>3</sub> ) <sub>6</sub>                  | $\beta$ -BaTi(IO <sub>3</sub> ) <sub>6</sub>                   |  |
|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--|
| Formula weight                                     | 1234.64 g/mol                                                  |                                                                |  |
| Temperature                                        | 100(2) K                                                       |                                                                |  |
| Wavelength                                         | 0.7                                                            | 1073 Å                                                         |  |
| Crystal system                                     | Tr                                                             | igonal                                                         |  |
| space group                                        | <i>R</i> -3 <i>c</i>                                           |                                                                |  |
| Unit cell dimensions                               | a = 10.9180(5) Å,<br>c = 11.0808(6) Å,                         | a = 11.3909(6) Å,<br>c = 11.1056(7) Å,                         |  |
| Z, Volume                                          | 3, 1143.90(12) Å <sup>3</sup>                                  | 3, 1247.93(15) Å <sup>3</sup>                                  |  |
| Density (g/cm <sup>3</sup> )                       | 5.377                                                          | 4.929                                                          |  |
| Absorption coefficient (mm <sup>-1</sup> )         | 15.336                                                         | 14.057                                                         |  |
| F (000)                                            | 1620                                                           | 1620                                                           |  |
| Theta range for data collection                    | 2.832 to 27.471°                                               | 2.762 to 27.454°                                               |  |
| Limiting indices                                   | $-12 \le h \le 13$<br>$-14 \le k \le 13$<br>$-14 \le k \le 14$ | $-14 \le h \le 14$<br>$-14 \le k \le 14$<br>$-14 \le l \le 14$ |  |
| Reflections collected                              | 3924                                                           | 4208                                                           |  |
| Completeness to theta                              | 100 %                                                          | 100 %                                                          |  |
| Refinement method                                  | Full-matrix least-squares on $F^2$                             | Full-matrix least-squares on $F^2$                             |  |
| Data / restraints / parameters                     | 584 / 0 / 31                                                   | 641 / 0 / 42                                                   |  |
| Goodness-of-fit on $F^2$                           | 0.746                                                          | 1.156                                                          |  |
| Final <i>R</i> indices $[F_o^2 > 2s(F_o^2)]^{[a]}$ | $R_1 = 0.0179, \\ wR_2 = 0.0773$                               | $R_1 = 0.0317,$<br>$wR_2 = 0.1348$                             |  |
| R indices (all data)                               | $R_1 = 0.0212,$<br>$wR_2 = 0.0871$                             | $R_1 = 0.0342,$<br>$wR_2 = 0.1373$                             |  |
| Largest diff. peak and hole $(e \cdot Å^{-3})$     | 0.859 and -1.031                                               | 3.285 and -2.689                                               |  |

**Table S2.** Crystal data and structure refinement for  $\alpha$ - and  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub> at low temperature.

| Atom | Х       | у       | Z       | $U_{eq}$ | BVS   |
|------|---------|---------|---------|----------|-------|
| Bal  | 0       | 0       | 0.5     | 10(2)    | 2.462 |
| Ti1  | 3333    | 6666    | 6666    | 11(5)    | 4.173 |
| I1   | 1146(3) | 4079(3) | 4557(3) | 10(2)    | 5.011 |
| 01   | 1681(4) | 5521(4) | 5675(3) | 12(7)    | 2.167 |
| O2   | 1271(4) | 2875(4) | 5550(3) | 15(8)    | 2.084 |
| O3   | 2740(4) | 4702(4) | 3690(4) | 17(8)    | 1.871 |

**Table S3a.** Atomic coordinates (× 10<sup>4</sup>) and equivalent isotropic displacement parameters ( $Å^2 \times 10^3$ ) for  $\alpha$ -BaTi(IO<sub>3</sub>)<sub>6</sub> U<sub>eq</sub> is defined as one-third of the trace of the orthogonalized U<sub>ij</sub> tensor.

| Atom | Х          | у          | Z           | $U_{eq}$   | BVS   |
|------|------------|------------|-------------|------------|-------|
| Ba1  | 0          | 0          | 0.38009(19) | 0.0234(4)  | 2.21  |
| Ti1  | 0.333333   | 0.666667   | 0.666667    | 0.0134(7)  | 4.355 |
| I1   | 0.07188(4) | 0.35479(4) | 0.55802(4)  | 0.0118(3)  | 4.988 |
| 01   | 0.0956(6)  | 0.2878(6)  | 0.6972(5)   | 0.0242(12) | 1.823 |
| O2   | 0.1224(5)  | 0.2718(6)  | 0.4524(5)   | 0.0182(11) | 2.132 |
| 03   | 0.2379(5)  | 0.5135(5)  | 0.5609(6)   | 0.0206(12) | 2.202 |

**Table S3b.** Atomic coordinates (× 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup> × 10<sup>3</sup>) for  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub> U<sub>eq</sub> is defined as one-third of the trace of the orthogonalized U<sub>ij</sub> tensor.

| Ba1-O2    | 2.802(4)   | O2-Ba1-O3 | 124.38(10) |
|-----------|------------|-----------|------------|
| Ba1-O2    | 2.802(4)   | O2-Ba1-O3 | 124.38(10) |
| Ba1-O2    | 2.802(4)   | O2-Ba1-O3 | 117.19(10) |
| Ba1-O2    | 2.802(4)   | O2-Ba1-O3 | 66.90(10)  |
| Ba1-O2    | 2.802(4)   | O2-Ba1-O3 | 55.62(10)  |
| Ba1-O2    | 2.802(4)   | O2-Ba1-O3 | 62.81(10)  |
| Ba1-O3    | 2.955(4)   | O2-Ba1-O3 | 113.10(10) |
| Ba1-O3    | 2.955(4)   | O3-Ba1-O3 | 180        |
| Ba1-O3    | 2.955(4)   | O2-Ba1-O3 | 66.90(10)  |
| Ba1-O3    | 2.955(4)   | O2-Ba1-O3 | 124.38(10) |
| Ba1-O3    | 2.955(4)   | O2-Ba1-O3 | 62.81(10)  |
| Ba1-O3    | 2.955(4)   | O3-Ba1-O3 | 111.82(12) |
| Ti1-O1    | 1.950(3)   | O2-Ba1-O3 | 113.10(10) |
| Ti1-O1    | 1.950(3)   | O2-Ba1-O3 | 55.62(10)  |
| Til-O1    | 1.950(4)   | O2-Ba1-O3 | 117.19(10) |
| Ti1-O1    | 1.950(4)   | O3-Ba1-O3 | 68.18(12)  |
| Til-O1    | 1.950(3)   | O2-Ba1-O3 | 62.81(10)  |
| I1-O1     | 1.860(4)   | O2-Ba1-O3 | 66.90(10)  |
| I1-O2     | 1.779(3)   | O2-Ba1-O3 | 55.62(10)  |
| I1-O3     | 1.805(4)   | O3-Ba1-O3 | 111.82(12) |
| O2-Ba1-O2 | 180        | O3-Ba1-O3 | 111.82(12) |
| O2-Ba1-O2 | 115.36(5)  | O2-Ba1-O3 | 62.81(10)  |
| O2-Ba1-O2 | 64.64(5)   | O2-Ba1-O3 | 66.90(10)  |
| O2-Ba1-O2 | 64.64(5)   | O2-Ba1-O3 | 55.62(10)  |
| O2-Ba1-O2 | 115.36(5)  | O3-Ba1-O3 | 68.18(12)  |
| O2-Ba1-O2 | 115.36(5)  | O3-Ba1-O3 | 68.18(12)  |
| O2-Ba1-O2 | 64.64(5)   | O3-Ba1-O3 | 68.18(12)  |
| O2-Ba1-O2 | 180.00(14) | O3-Ba1-O3 | 68.18(12)  |

**Table S4a.** Selected bond distances (Å) and angles (deg) for  $\alpha$ -BaTi(IO<sub>3</sub>)<sub>6</sub>.

| O2-Ba1-O2 | 64.64(5)   | O2-Ba1-O3 | 117.19(10) |
|-----------|------------|-----------|------------|
| O2-Ba1-O2 | 115.36(5)  | O2-Ba1-O3 | 113.10(10) |
| O2-Ba1-O2 | 180        | O2-Ba1-O3 | 124.38(10) |
| O2-Ba1-O2 | 115.36(5)  | O3-Ba1-O3 | 111.82(12) |
| O2-Ba1-O2 | 64.64(5)   | O3-Ba1-O3 | 111.82(12) |
| O2-Ba1-O2 | 64.64(5)   | O3-Ba1-O3 | 180        |
| O2-Ba1-O2 | 115.36(5)  | O2-I1-O3  | 101.18(17) |
| O2-Ba1-O3 | 55.62(10)  | O3-I1-O1  | 101.67(16) |
| O2-Ba1-O3 | 62.81(10)  | O2-I1-O1  | 96.12(16)  |
| O2-Ba1-O3 | 113.10(10) | O1-Ti1-O1 | 91.08(14)  |
| O2-Ba1-O3 | 124.38(10) | O1-Ti1-O1 | 88.93(14)  |
| O2-Ba1-O3 | 117.19(10) | O1-Ti1-O1 | 88.93(14)  |
| O2-Ba1-O3 | 66.90(10)  | O1-Ti1-O1 | 91.08(14)  |
| O2-Ba1-O3 | 113.10(10) | O1-Ti1-O1 | 91.08(14)  |
| O2-Ba1-O3 | 55.62(10)  | O1-Ti1-O1 | 88.92(14)  |
| O2-Ba1-O3 | 117.19(10) | O1-Ti1-O1 | 180        |
| O3-Ba1-O3 | 68.18(12)  | O1-Ti1-O1 | 180        |
| O2-Ba1-O3 | 66.90(10)  | O1-Ti1-O1 | 88.92(14)  |
| O2-Ba1-O3 | 124.38(10) | O1-Ti1-O1 | 91.08(14)  |
| O2-Ba1-O3 | 62.81(10)  | O1-Ti1-O1 | 88.92(14)  |
| O3-Ba1-O3 | 111.82(12) | O1-Ti1-O1 | 180        |
| O3-Ba1-O3 | 180        | O1-Ti1-O1 | 91.08(14)  |
| O2-Ba1-O3 | 117.19(10) | 01-Ti1-O1 | 91.07(14)  |
| O2-Ba1-O3 | 113.10(10) | 01-Ti1-O1 | 88.92(14)  |

| Ba1-O1    | 3.031(5)   | O2-Ba1-O2 | 112.05(9)  |
|-----------|------------|-----------|------------|
| Ba1-O1    | 3.031(5)   | O2-Ba1-O1 | 172.64(13) |
| Ba1-O1    | 3.031(5)   | O2-Ba1-O1 | 61.31(13)  |
| Ba1-O2    | 3.268(5)   | O2-Ba1-O1 | 61.31(13)  |
| Ba1-O2    | 3.268(5)   | O2-Ba1-O1 | 74.47(13)  |
| Ba1-O2    | 3.268(5)   | O2-Ba1-O1 | 61.31(13)  |
| Ba1-O2    | 2.805(5)   | O1-Ba1-O1 | 112.37(8)  |
| Ba1-O2    | 2.805(5)   | O2-Ba1-O2 | 128.52(10) |
| Ba1-O2    | 2.805(5)   | O1-Ba1-O2 | 117.41(12) |
| Ti1-O3    | 1.939(4)   | O1-Ba1-O2 | 129.98(12) |
| Ti1-O3    | 1.939(4)   | O2-Ba1-O2 | 56.10(5)   |
| Ti1-O3    | 1.939(4)   | O2-Ba1-O2 | 128.52(10) |
| Ti1-O3    | 1.939(4)   | O1-Ba1-O2 | 117.41(12) |
| Ti1-O3    | 1.939(4)   | O2-Ba1-O2 | 90.75(12)  |
| Ti1-O3    | 1.939(4)   | O2-Ba1-O2 | 128.52(10) |
| I1-O1     | 1.804(5)   | O2-Ba1-O2 | 56.10(5)   |
| I1-O2     | 1.788(4)   | O1-Ba1-O2 | 129.98(12) |
| I1-O3     | 1.857(5)   | O2-Ba1-O2 | 90.75(12)  |
| O2-Ba1-O2 | 112.05(9)  | O3-Ti1-O3 | 180        |
| O2-Ba1-O2 | 112.05(9)  | O3-Ti1-O3 | 86.8(2)    |
| O2-Ba1-O1 | 74.47(13)  | O3-Ti1-O3 | 86.8(2)    |
| O2-Ba1-O1 | 172.64(13) | O3-Ti1-O3 | 86.8(2)    |
| O1-Ba1-O1 | 112.37(8)  | O3-Ti1-O3 | 93.2(2)    |
| O2-Ba1-O1 | 74.47(13)  | O3-Ti1-O3 | 86.8(2)    |
| O2-Ba1-O1 | 172.64(13) | O3-Ti1-O3 | 180        |
| O1-Ba1-O1 | 112.37(8)  | O3-Ti1-O3 | 86.8(2)    |
| O2-Ba1-O2 | 56.10(5)   | O3-Ti1-O3 | 93.2(2)    |
| O2-Ba1-O2 | 56.10(5)   | O3-Ti1-O3 | 93.2(2)    |

**Table S4b.** Selected bond distances (Å) and angles (deg) for  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub>.

| O1-Ba1-O2 | 51.63(12)  | O3-Ti1-O3 | 86.8(2)  |
|-----------|------------|-----------|----------|
| O2-Ba1-O2 | 56.10(5)   | O3-Ti1-O3 | 93.2(2)  |
| O1-Ba1-O2 | 129.98(12) | O3-Ti1-O3 | 180      |
| O1-Ba1-O2 | 51.63(12)  | O3-Ti1-O3 | 93.2(2)  |
| O2-Ba1-O2 | 56.10(5)   | O3-Ti1-O3 | 93.2(2)  |
| O1-Ba1-O2 | 51.63(12)  | O2-I1-O1  | 100.0(2) |
| O1-Ba1-O2 | 117.41(12) | O1-I1-O3  | 95.6(2)  |
| O2-Ba1-O2 | 90.75(12)  | 02-I1-O3  | 94.9(2)  |

| <i>α</i> -Ba           | aTi(IO <sub>3</sub> ) <sub>6</sub> | <i>β</i> -Ba           | aTi(IO <sub>3</sub> ) <sub>6</sub> |  |
|------------------------|------------------------------------|------------------------|------------------------------------|--|
| Ba1-O2                 | 2.802(4) Å                         | Ba1-O1                 | 3.031(5) Å                         |  |
| Ba1-O2                 | 2.802(4) Å                         | Ba1-O1                 | 3.031(5) Å                         |  |
| Ba1-O2                 | 2.802(4) Å                         | Ba1-O1                 | 3.031(5) Å                         |  |
| Ba1-O2                 | 2.802(4) Å                         | Ba1-O2                 | 3.268(5) Å                         |  |
| Ba1-O2                 | 2.802(4) Å                         | Ba1-O2                 | 3.268(5) Å                         |  |
| Ba1-O2                 | 2.802(4) Å                         | Ba1-O2                 | 3.268(5) Å                         |  |
| Ba1-O3                 | 2.955(4) Å                         | Ba1-O2                 | 2.805(5) Å                         |  |
| Ba1-O3                 | 2.955(4) Å                         | Ba1-O2                 | 2.805(5) Å                         |  |
| Ba1-O3                 | 2.955(4) Å                         | Ba1-O2                 | 2.805(5) Å                         |  |
| Ba1-O3                 | 2.955(4) Å                         |                        |                                    |  |
| Ba1-O3                 | 2.955(4) Å                         |                        |                                    |  |
| Ba1-O3                 | 2.955(4) Å                         |                        |                                    |  |
| $(Ba) - (O)_{average}$ | 2.878 Å                            | $(Ba) - (O)_{average}$ | 3.035 Å                            |  |

**Table S5.** The Ba<sup>2+</sup> cations coordinated and Ba-O bonds in  $\alpha$ - and  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub>.



**Figure S1.** IR spectra for (a)  $\alpha$ - and (b)  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub>.



**Figure S2.** The UV-Vis-NIR diffuse reflectance spectra for (a)  $\alpha$ - and (b)  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub>.



**Figure S3.** Thermogravimetric analysis diagram for (a)  $\alpha$ - and (b)  $\beta$ -BaTi(IO<sub>3</sub>)<sub>6</sub>.



Figure S4.  $\alpha$ -BaTi(IO<sub>3</sub>)<sub>6</sub> decomposes above 650 °C to a mixture of Ba<sub>5</sub>(IO<sub>6</sub>)<sub>2</sub> and TiO<sub>2</sub>.