Supporting information

Molecular Complexes and Main-Chain Organometallic Polymers Based on Janus Bis(carbenes) Fused to Metalloprophyrins

J.-F. Longevial*, Mamadou Lo, Aurélien Lebrun, D. Laurencin, S. Clément and S. Richeter*

Figure S 1. ¹ H NMR spectrum of [NiAuPh] in CD ₂ Cl ₂ , 400 MHz, 298K	_2
Figure S 2. ¹ H 2D DOSY NMR spectrum of [NiAuPh] in CD ₂ Cl ₂ , 400 MHz, 298K	2
Figure S 3. ¹³ C{ ¹ H} NMR spectrum of [NiAuPh] in CD ₂ Cl ₂ , 126 MHz, 298K	3
Figure S 4. HRMS ESI ⁺ report for [NiAuPh]	4
Figure S 5. ¹ H NMR spectrum of Ni ₂ in CD ₂ Cl ₂ , 400 MHz, 298K	5
Figure S 6. ¹ H 2D DOSY NMR spectrum of Ni ₂ in CD ₂ Cl ₂ , 400 MHz, 298K	5
Figure S 7. ¹³ C{ ¹ H} NMR spectrum of Ni ₂ in CD ₂ Cl ₂ , 126 MHz, 298K	6
Figure S 8. ${}^{13}C{}^{1}H{}$ NMR spectrum of Ni ₂ (zoom) in CD ₂ Cl ₂ , 126 MHz, 298K	6
Figure S 9. Simulated mass spectrum of Ni 2	7
Figure S 10. Experimental mass spectrum of Ni ₂ (MALDI-TOF+)	7
Figure S 11. ¹ H NMR spectrum of Ni ₃ in CD₂Cl₂, 400 MHz, 298K	9
Figure S 12. ¹³ C{ ¹ H} NMR spectrum of Ni ₃ in CD ₂ Cl ₂ , 126 MHz, 298K	9
Figure S 13. ¹ H 2D DOSY NMR spectrum of Ni ₃ in CD ₂ Cl ₂ , 400 MHz, 298K	10
Figure S 14. Simulated mass spectrum of Ni ₃	11
Figure S 15. Experimental mass spectrum of Ni ₃ (MALDI-TOF+)	11
Figure S 16. ¹ H NMR spectrum of Zn₃ in CD ₂ Cl ₂ , 400 MHz, 298K	13
Figure S 17. ¹ H NMR spectrum (zoom) of Zn₃ in CD ₂ Cl ₂ , 400 MHz, 298K	13
Figure S 18. ¹³ C{ ¹ H} NMR spectrum of Zn ₃ in CD ₂ Cl ₂ , 126 MHz, 298K	14
Figure S 19. ¹³ C{ ¹ H} NMR spectrum (zoom) of Zn₃ in CD ₂ Cl ₂ , 126 MHz, 298K	14
Figure S 20. ¹ H 2D DOSY NMR spectrum of Zn₃ in CD ₂ Cl ₂ , 400 MHz, 298K	15
Figure S 21. Experimental mass spectrum of Zn₃ (MALDI-TOF ⁺)	16
Figure S 22. Simulated mass spectrum of Zn₃	16
Figure S 23. ¹ H NMR spectrum of Ni-I₂ in CD ₂ Cl ₂ , 400 MHz, 298K	17
Figure S 24. ¹³ C{ ¹ H} NMR spectrum of Ni-I ₂ in CD ₂ Cl ₂ , 126 MHz, 298K	17
Figure S 25. Experimental mass spectrum of Ni-I₂ (ESI-TOF ⁺)	18
Figure S 26. ¹ H NMR spectrum of [Ni(AuCl)₂] in CD ₂ Cl ₂ , 400 MHz, 298K	19
Figure S 27. ¹³ C{ ¹ H} NMR spectrum of [Ni(AuCl)₂] in CD ₂ Cl ₂ , 126 MHz, 298K	19
Figure S 28. Experimental mass spectrum of [Ni(AuCl)₂] (MALDI-TOF+)	20
Figure S 29. ¹ H NMR spectrum of [Ni(AuPh)₂] in CD ₂ Cl ₂ , 400 MHz, 298K	21
Figure S 30. ¹³ C{ ¹ H} NMR spectrum of [Ni(AuPh)₂] in CD ₂ Cl ₂ , 126 MHz, 298K	21
Figure S 31. ¹ H 2D DOSY NMR spectrum of [Ni(AuPh)₂] in CD ₂ Cl ₂ , 600 MHz, 298K	22
Figure S 32. Experimental Mass spectrum of [Ni(AuPh)₂] (MALDI-TOF ⁺)	22
Figure S 33. ¹ H NMR spectrum of Zn-I₂ in CDCI ₃ , 400 MHz, 298K	23
Figure S 34. ¹³ C{ ¹ H} NMR spectrum of Zn-I ₂ in CDCl ₃ , 126 MHz, 298K	24
Figure S 35. Experimental Mass spectrum of Zn-I₂ (ESI-TOF ⁺)	24
Figure S 36. ¹ H NMR spectrum of [Zn(AuCl)₂] in CDCl ₃ , 400 MHz, 298K	25
Figure S 37. ¹³ C{ ¹ H} NMR spectrum of [Zn(AuCl)₂] in CD ₂ Cl ₂ , 126 MHz, 298K	25
Figure S 38. Experimental mass spectrum of [Zn(AuCl)₂] (MALDI-TOF ⁺)	26
Figure S 39. Plot of log(D) = f(MW) for the studied compounds	27
Figure S 40. Relative ratio of Au/Ni present in Ni_{mat} measured by EDX. Measured were repeated 3 times.	28
Figure S 41. Elemental mapping analysis of Ni_{mat} realized by means of EDX in zone 1	28
Figure S 42. Elemental mapping analysis of Ni_{mat} realized by means of EDX in zone 2	29
Figure S 43. Solid state UV-Vis spectrum of Ni_{mat}	29

Figure S 44. N ₂ adsorption/desorption isotherms of Ni_{mat}	30
Figure S 45. Thermogravimetric analysis of Ni_{mat}	30
Figure S 46. Relative ratio of Au/Ni present in Zn_{mat} measured by EDX. Measured were repeated 3 times	31
Figure S 47. Elemental mapping analysis of Zn_{mat} realized by means of EDX in zone 1 .	31
Figure S 48. Elemental mapping analysis of Zn_{mat} realized by means of EDX in zone 2 .	32
Figure S 49. Solid state UV-Vis spectrum of Zn_{mat}	32
Figure S 50. N ₂ adsorption/desorption isotherms of Zn_{mat}	33

Chemical Formula: C₇₁H₆₉AuN₆Ni Exact Mass: 1260,4603

Figure S 1. ¹H NMR spectrum of **[NiAuPh]** in CD₂Cl₂, 400 MHz, 298K

Figure S 2. 1 H 2D DOSY NMR spectrum of [NiAuPh] in CD₂Cl₂, 400 MHz, 298K

Figure S 3. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of [NiAuPh] in CD_2Cl_2, 126 MHz, 298K

Elemental Composition Report

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -50.0, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 188 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 Ni: 1-1 Au: 0-1

SYNAPT G2-S#UEB205 Y-YG151126-02 4 (0 175)		JF.02.65		26-Nov-2015
102 1251.4362	1255.4451 1259	38891260.4597_1261.4590	1264.4683 1269.4402 1270.9502	1: TOF MS ES+ 1.33e+003 1274.0876
1250.0 1252.5	1255.0 1257.5	1260.0 1262.5	1265.0 1267.5 1270.0 1	272.5 1275.0 m/z
Minimum: Maximum:	10.0 10.0 5	-50.0 50.0		
Mass Calc. Mass	mDa PPM I	DBE i-FIT Norm	Conf(%) Formula	
1260.4597 1260.4603	-0.6 -0.5 4	41.5 326.7 n/a	n/a C71 H69 N6 Ni Au	1

Figure S 4. HRMS ESI⁺ report for [NiAuPh]

Chemical Formula: C₁₃₆H₁₃₂Au₂N₁₂Ni₂ Exact Mass: 2442,8736

Figure S 5. ¹H NMR spectrum of Ni₂ in CD₂Cl₂, 400 MHz, 298K

Figure S 6. ¹H 2D DOSY NMR spectrum of Ni₂ in CD₂Cl₂, 400 MHz, 298K

Figure S 7. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of Ni_{2} in CD_2Cl_2, 126 MHz, 298K

Figure S 8. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of Ni_{2} (zoom) in CD_2Cl_2, 126 MHz, 298K

Figure S 9. Simulated mass spectrum of Ni_2

Figure S 10. Experimental mass spectrum of Ni_2 (MALDI-TOF+)

Chemical Formula: $C_{219}H_{207}Au_3N_{18}Ni_3$ Molecular Weight: 3858,1709

Figure S 11. ^1H NMR spectrum of Ni_3 in CD_2Cl_2, 400 MHz, 298K

Figure S 12. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of Ni_{3} in CD_2Cl_2, 126 MHz, 298K

Figure S 13. ^1H 2D DOSY NMR spectrum of Ni_3 in CD_2Cl_2, 400 MHz, 298K

Figure S 14. Simulated mass spectrum of Ni_3

Figure S 15. Experimental mass spectrum of Ni₃ (MALDI-TOF+)

Figure S 16. ¹H NMR spectrum of $\mathbf{Zn_3}$ in CD_2CI_2 , 400 MHz, 298K

Figure S 17. ¹H NMR spectrum (zoom) of **Zn₃** in CD₂Cl₂, 400 MHz, 298K

Figure S 18. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of \textbf{Zn}_{3} in CD_2Cl_2, 126 MHz, 298K

Figure S 19. ¹³C{¹H} NMR spectrum (zoom) of **Zn₃** in CD₂Cl₂, 126 MHz, 298K

Figure S 20. ¹H 2D DOSY NMR spectrum of $\mathbf{Zn_3}$ in CD_2Cl_2 , 400 MHz, 298K

Figure S 21. Experimental mass spectrum of Zn_3 (MALDI-TOF⁺)

Figure S 22. Simulated mass spectrum of Zn₃

Chemical Formula: C₆₆H₇₀I₂N₈Ni Molecular Weight: 1287,84

Figure S 23. ^1H NMR spectrum of $\textbf{Ni-I}_2$ in CD_2Cl_2, 400 MHz, 298K

Figure S 24. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of $\textbf{Ni-I_2}$ in CD_2Cl_2, 126 MHz, 298K

Figure S 25. Experimental mass spectrum of Ni-I₂ (ESI-TOF⁺)

Chemical Formula: C₆₆H₆₈Au₂Cl₂N₈Ni Exact Mass: 1494,36

Figure S 26. ¹H NMR spectrum of **[Ni(AuCl)₂]** in CD₂Cl₂, 400 MHz, 298K

S20

Figure S 28. Experimental mass spectrum of [Ni(AuCl)₂] (MALDI-TOF+)

Chemical Formula: C₈₂H₇₈Au₂N₈Ni Molecular Weight: 1626,5

Figure S 29. ¹H NMR spectrum of [Ni(AuPh)₂] in CD₂Cl₂, 400 MHz, 298K

Figure S 30. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of $[\text{Ni}(\text{AuPh})_{2}]$ in CD₂Cl₂, 126 MHz, 298K

Figure S 31. 1 H 2D DOSY NMR spectrum of [Ni(AuPh)₂] in CD₂Cl₂, 600 MHz, 298K

Figure S 32. Experimental Mass spectrum of [Ni(AuPh)₂] (MALDI-TOF⁺)

Figure S 33. $^1\!H$ NMR spectrum of $\textbf{Zn-I}_2$ in CDCl₃, 400 MHz, 298K

Figure S 34. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of $\textbf{Zn-I_2}$ in CDCl_3, 126 MHz, 298K

Figure S 35. Experimental Mass spectrum of Zn-I₂ (ESI-TOF⁺)

Chemical Formula: C₆₆H₆₈Au₂Cl₂N₈Zn Molecular Weight: 1500,3500

Figure S 36. ¹H NMR spectrum of **[Zn(AuCl)**₂] in CDCl₃, 400 MHz, 298K

Figure S 37. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of $\textbf{[Zn(AuCl)_2]}$ in CD_2Cl_2, 126 MHz, 298K

Figure S 38. Experimental mass spectrum of $[Zn(AuCl)_2]$ (MALDI-TOF⁺)

Figure S 39. Plot of log(D) = f(MW) for the studied compounds

Ni_{mat}

Nimat M = Ni 74%

EDX Trials	Au	Ni	Au/Ni
1	1.60	0.96	1.66
2	1.61	0.92	1.75
3	1.73	1.02	1.79
average	1.64	0.96	1.71

Figure S 40. Relative ratio of Au/Ni present in Nimat measured by EDX. Measured were repeated 3 times.

Figure S 41. Elemental mapping analysis of Ni_{mat} realized by means of EDX in zone 1

Figure S 42. Elemental mapping analysis of Ni_{mat} realized by means of EDX in zone 2

Figure S 43. Solid state UV-Vis spectrum of Nimat

Figure S 44. N₂ adsorption/desorption isotherms of Nimat

Figure S 45. Thermogravimetric analysis of Nimat

Zn_{mat}

EDX Trials	Au	Zn	Au/Zn
1	2.26	0.97	2.32
2	2.22	0.95	2.33
3	2.22	0.97	2.28
average	2.23	0.96	2.32

Figure S 46. Relative ratio of Au/Ni present in Zn_{mat} measured by EDX. Measured were repeated 3 times.

Figure S 47. Elemental mapping analysis of \mathbf{Zn}_{mat} realized by means of EDX in zone 1.

Figure S 48. Elemental mapping analysis of \mathbf{Zn}_{mat} realized by means of EDX in zone 2.

Figure S 49. Solid state UV-Vis spectrum of **Zn**_{mat}

Figure S 50. N₂ adsorption/desorption isotherms of **Zn**_{mat}