Supplementary Materials

The phase transition tuning by the Fe(III)/Co(III) substitution in switchable cyano-bridged perovskites: [C₃N₂H₂]₂[KFe_xCo_{1-x}(CN)₆]

Magdalena Rok^{ab}⁺, Marcin Moskwa^a, Andrzej Pawlukojć^{bc}, Rafał Janicki^a, Iga Zuba^{bc}, Piotr Zieliński^d, Paweł Sobieszczyk^d, Grażyna Bator^a

^aFaculty of Chemistry, University of Wroclaw, F. Joliot–Curie 14, 50-383 Wrocław, Poland
 ^bFrank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot–Curie 6, 141-980
 Dubna, Russia
 ^cInstitute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa, Poland
 ^dThe H. Niewodniczański Institute of Nuclear Physics PAS, Radzikowskiego 152, 31-342
 Kraków, Poland

+ e-mail: magdalena.rok@chem.uni.wroc.pl

CAPTIONS OF FIGURES

Fig. S1. X-ray diffraction pattern of ImFe_xCo_{1-x} (x: 0.00-1.00) at 298 K and calculated from crystal Fig. S2. SEM photographs of pure and mixed-crystals. Four squares represent the measured areas...6 Fig. S3. TGA and DTA thermograms between 300 and 900 K measured for IMCo7 Fig. S4. Temperature dependences of relative changes of linear dimensions $\Delta L/L_0$ [%] curves for IMFe_xCo_{1-x}, x = 0.85 (temperature range from 100 to 280 K), measured along three perpendicular Fig. S5. SEM photographs of mixed crystal IMFe_{0.42}Co_{0.58} after X-ray measurement in IV, III, II phases. Fig. S6. In the Phase III, all hexacyanoferrate(III)/cobaltate(III) ions (presented as octahedron formed by Co/Fe and C atoms) are twisted in the same direction. In the Phase IV, by contrast, the octahedrons of hexacyanoferrate ions are twisted in opposite directions. Symmetry codes: (i) -x+2, -y+1/2, -z+5/2; (ii) x, y, z+1; (iii) -x+3/2, y, -z+1; (iv) x-1/2, -y+1/2, z-1/2......10 Fig. S7. Normalized dielectric response for pure IMCFe (x=1), IMCo (x=0) and for mixed-crystals **IMFe**_x**Co**_{1-x} (x = 0.29, 0.51, 0.63, 0.70 and 0.85).....12 Fig. S8. a) IR spectra measured for pure IMFe and IMCo in KBr. Raman spectra for b) IMCo and c) Fig. S9. Example of fitting of four peaks assigned to C≡N stretching modes in order to estimate stoichiometry of mixed crystals......15 Fig. S10. a) Temperature evolution of bands assigned to Fe/Co-C stretching between 390 and 430

Fig. S11. a) Temperature evolution of bands assigned to C≡N stretching between 2100 and 2140	
cm ⁻¹ ; (b) temperature dependencies of the band positions	16
Fig. S12. a) Temperature evolution of bands assigned to out-of-plane hydrogen bond (N-H…N)	
vibration between 720 and 820 cm ⁻¹ ; (b) temperature dependencies of the band positions	17
Fig. S13. a) Temperature evolution of bands assigned to imidazolium ring deformation between 880	0
and 940 cm ⁻¹ ; (b) temperature dependencies of the band positions	17
Fig. S14. NIR spectra versus temperature measured for pure IMCo and IMFe monocrystals	18

CAPTIONS OF TABLES

Table S1. Masses and number of moles of mixed crystals IMFe _x Co _{1-x} .	3
Table S2. Crystal data, experimental details, and structure refinement results for IMFe0.42Co0.58 at	
298, 170 and 100 K	4
Table S3. Atomic concentration (%) of mixed crystal obtained on EDS results.	5
Table S4. Thermodynamic parameters of phase transitions for IMFe _x Co _{1-x} , x = 0, 0.29, 0.51, 0.63, 0.7	,
0.85, 1.0 in the condensed state	8
Table S5. Atomic concentration (%) of IMFe0.42Co0.58 crystal obtained on EDS results	0
Table S6. Hydrogen-bond geometry (Å, º) for ImFe0.42Co0.58 at 100 K	0
Table S7. Selected bond lengths and the shortest M…K distances (Å) (where M: Fe(III)/Co(III), Fe(III),	
Co(III)) for IMFe _{0.42} Co _{0.58} , IMFe ¹ and IMCo ² 1	1
Table S8. Cage volumes per unit cell (Å ³) for ImFe _{0.42} Co _{0.58} , ImFe ^{1,3} and ImCo ² . The volume of a single	е
cage calculated from the crystal structure with PLATON program ⁴ 1	1
Table S9. Observed IR and Raman frequencies (in cm ⁻¹) and their assignments for (IMFe) and (IMCo)	
perovskites1	4
Table S10. Areas obtained all peaks marked in Fig. S71	5

Theoretical X	K₃Fe	K3Fe(CN)6K3Co(CN)61H-Imidazolehydrochloridehydrochloride			Obtained X		
of Fe ³⁺	m _{Fe³⁺ [g]}	n _{Fe³⁺ [mol]}	m _{Co³⁺ [g]}	n _{Co³⁺} [mol]	m _{imid.HCl} [g]	n _{imid.HCl} [mol]	of Fe ³⁺
IMCo , 0	0.00	0.00	3.00	9.0E-03	2.83	2.7E-02	IMCo , 0
0.2	0.62	1.9E-03	2.50	7.5E-03	2.95	2.8E-02	0.29
0.3	0.85	2.6E-03	2.00	6.0E-03	2.70	2.6E-02	0.42
0.4	1.32	4.0E-03	2.00	6.0E-03	3.15	3.0E-02	0.51
0.5	1.49	4.5E-03	1.50	4.5E-03	2.83	2.7E-02	0.63
0.6	2.23	6.8E-03	1.50	4.5E-03	3.54	3.4E-02	0.70
0.8	3.17	9.6E-03	0.80	2.4E-03	3.77	3.6E-02	0.85
IMFe , 1	3.00	9.1E-03	0.00	0.0E+00	2.86	2.7E-02	IMFe , 1

Table S1. Masses and number of moles of mixed crystals IMFe_xCo_{1-x}.

Fig. S1. X-ray diffraction pattern of $ImFe_xCo_{1-x}$ (x: 0.00-1.00) at 298 K and calculated from crystal structure IMCo.

	ImFeCo298K	ImFeCo170K	ImFeCo100K
Chemical formula		$(C_{3}H_{5}N_{2})_{2}[KFe_{0.42}Co_{0.58}(CN)_{6}]$	
<i>M</i> r		391.03	
Crystal system, space	Trigonal,	Trigonal,	Monoclinic,
group	R3m	R3	A2/a*
Temperature (K)	298(2)	170(2)	100(2)
a, b, c (Å)	8.747(3),	8.763(2),	15.089(2),
	8.747(3),	8.763(2),	8.773(3),
	19.074(3)	18.800(4)	13.454(2)
β (°)	90	90	111.74(3)
<i>V</i> (ų)	1264(2)	1250(2)	1654(3)
Ζ	3	3	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
μ (mm⁻¹)	1.23	1.24	1.25
Crystal size (mm)	0.39×0.30×0.16	0.39×0.30×0.16	0.39×0.30×0.16
Absorption correction	Analytical	Analytical	Analytical
T _{min} , T _{max}	0.760, 0.903	0.723, 0.874	0.736, 0.871
No. of measured,	1850, 324, 310	4619, 526, 521	5343, 1546, 1366
independent and			
observed			
$[I > 2\sigma(I)]$ reflections			
R _{int}	0.071	0.081	0.065
(sin θ/λ) _{max} (Å ⁻¹)	0.605	0.604	0.606
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.098, 1.10	0.052, 0.135, 1.31	0.051, 0.141,
			1.12
No. of reflections	324	526	1546
No. of parameters	29	41	111
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}$ [e A ⁻³]	0.30/-0.43	0.44/-0.63	0.57/-0.40

Table S2.Crystal data, experimental details, and structure refinement resultsfor IMFe0.42C00.58 at 298, 170 and 100 K.

* - non-standard setting of C2/c space group (no. 15)

	$[C_3H_5N_2]_2[KFe_XCo_{1-X}(CN)_6]$							
X Fe ³⁺	No.	C [%]	N [%]	K [%]	Fe [%]	Co [%]		
	1	43.04	38.88	8.89	0.00	9.19		
0.0	2	43.60	37.53	9.33	0.00	9.54		
	3	42.84	37.67	9.70	0.00	9.79		
	4	42.63	38.23	9.55	0.00	9.59		
	Average	43.03	38.08	9.37	0.00	9.53		
	1	38.88	44.43	8.25	2.37	6.08		
	2	38.85	44.03	8.48	2.45	6.19		
0.29	3	39.2	44.03	8.34	2.51	5.92		
	4	38.58	44.81	8.23	2.51	5.87		
	Average	38.88	44.33	8.33	2.46	6.02		
	1	38.25	45.29	8.07	4.19	4.2		
	2	37.65	45.07	8.51	4.41	4.36		
0.51	3	37.48	45.1	8.57	4.63	4.22		
	4	37.49	45.63	8.27	4.51	4.1		
	Average	37.72	45.27	8.36	4.44	4.22		
0.63	1	36.14	44.86	9.24	6.35	3.41		
	2	35.79	44.22	9.76	6.53	3.72		
	3	35.59	44.57	9.75	5.98	4.11		
	4	35.22	44.24	10.16	6.58	3.8		
	Average	35.69	44.47	9.73	6.36	3.76		
	1	38.49	42.33	9.4	6.8	2.98		
	2	37.02	44.34	9.14	6.52	2.98		
0.70	3	36.76	45.05	9.01	6.7	2.47		
	4	38.01	44.1	8.75	6.41	2.74		
	Average	37.57	43.96	9.08	6.61	2.79		
	1	37.26	45.81	8.35	7.16	1.41		
	2	40.05	40.85	9.36	8.23	1.52		
0.85	3	37.72	44.38	8.75	7.74	1.42		
	4	38.68	44.38	9.19	8.17	1.33		
	Average	38.43	43.86	8.91	7.83	1.42		
	1	39.43	45.54	7.37	7.65	0.00		
	2	39.04	45.81	7.50	7.65	0.00		
1.0	3	38.77	45.03	7.94	8.26	0.00		
	4	39.79	45.21	7.84	8.16	0.00		
	Average	39.26	45.40	7.66	7.93	0.00		

 Table S3.
 Atomic concentration (%) of mixed crystal obtained on EDS results.

Fig. S2. SEM photographs of pure and mixed-crystals. Four squares represent the measured areas.

Fig. S3. TGA and DTA thermograms between 300 and 900 K measured for IMCo

Table S4. Thermodynamic parameters of phase transitions for IMFe_xCo_{1-x} , x = 0, 0.29, 0.51, 0.63, 0.7, 0.85, 1.	D
in the condensed state.	

РТ				$IV \rightarrow III$			
X _{Fe³⁺}	0.0	0.29	0.51	0.63	0.7	0.85	1.0
M [g/mol]	392.4	391.5	390.8	390.4	390.2	389.7	389.3
Т [К]	157.9	124.5	135.3	141.7	142.3	151.6	157.9
$\Delta H [J \cdot g^{-1}]$	7.63	6.08	7.11	7.28	7.05	7.97	7.63
∆H [J·mol⁻¹]	2993.63	2380.06	2778.44	2842.18	2750.87	3106.16	2970.13
$\Delta S [J \cdot mol^{-1} \cdot K^{-1}]$	18.96	19.12	20.54	20.06	19.34	20.49	18.81
Ν	3.13	3.16	3.44	3.34	3.20	3.43	3.10
РТ				$II \to I$			
X _{Fe³⁺}	0.0	0.29	0.51	0.63	0.7	0.85	1.0
M [g/mol]	392.4	391.5	390.8				
Т [К]	502.0	500.0	496.6				
$\Delta H [J \cdot g^{-1}]$	11.2	11.48	11.9				
∆H [J·mol⁻¹]	4394.32	4493.92	4650.27				
∆S [J·mol ⁻¹ ·K ⁻¹]	8.75	8.99	9.36				
Ν	1.69	1.72	1.76				

Fig. S4. Temperature dependences of relative changes of linear dimensions $\Delta L/L_0$ [%] curves for **IMFe_xCo_{1-x}**, x = 0.85 (temperature range from 100 to 280 K), measured along three perpendicular directions.

Fig. S5. SEM photographs of mixed crystal **IMFe**_{0.42}**Co**_{0.58} after X-ray measurement in IV, III, II phases. a) The picture of a fixed crystal on pin, b) two squares represent the measured EDS areas.

Table S5. Atomic concentration (%) of **IMFe**_{0.42}**Co**_{0.58} crystal obtained on EDS results.

X Fe ³⁺	No.	Fe [%]	Co [%]
0.42	1	41.26	58.74
	2	43.52	56.48
	Average	42.39	57.61

Fig. S6. In the Phase III, all hexacyanoferrate(III)/cobaltate(III) ions (presented as octahedron formed by Co/Fe and C atoms) are twisted in the same direction. In the Phase IV, by contrast, the octahedrons of hexacyanoferrate ions are twisted in opposite directions. Symmetry codes: (i) -x+2, -y+1/2, -z+5/2; (ii) x, y, z+1; (iii) -x+3/2, y, -z+1; (iv) x-1/2, -y+1/2, z-1/2.

D—H···A	D—H	H···A	D····A	D—H…A
N1A—H1A…N1 ⁱ	0.88	2.60	3.217(4)	128
N1A—H1A…N2 ⁱⁱ	0.88	2.51	3.136(5)	129
N3A—H3A…N3 ⁱⁱ	0.88	2.11	2.980(4)	168

Symmetry codes: (i) -*x*+3/2, *y*, -*z*+1; (ii) *x*, *y*-1/2, *z*-1/2; (iii) -*x*+2, -*y*+1, -*z*+1.

Table S7. Selected bond lengths and the shortest M…K distances (Å) (where M: Fe(III)/Co(III), Fe(III), Co(III)) for IMFe_{0.42}Co_{0.58}, IMFe¹ and IMCo².

	M—C	K—N	C—N	МК	M—C	K—N	C—N	МК
	Ph	ase II ($R\overline{3}m$)				Phase I	V (A2/a)	
					1.929(4)	2.862(3)	1.157(4)	5.911(2)
ImFe0.42CO0.58	1.922(2)	2.899(2)	1.148(3)	5.967(4)	1.930(3)	2.875(3)	1.158(4)	5.938(2)
					1.934(3)	2.888(3)	1.159(4)	5.959(2)
					1.949(4)	2.858(4)	1.148(5)	5.927(5)
ImFe ¹	1.940(2)	2.879(2)	1.148(3)	5.985(6)	1.949(4)	2.864(4)	1.153(2)	5.934(5)
					1.950(4)	2.874(4)	1.155(2)	5.954(5)
					1.902(4)	2.878(4)	1.148(5)	5.903(2)
ImCo ²	1.901(2)	2.902(2)	1.146(3)	5.947(4)	1.906(4)	2.887(4)	1.150(5)	5.923(2)
					1.908(4)	2.898(4)	1.152(5)	5.940(2)

Table S8. Cage volumes per unit cell $(Å^3)$ for ImFe_{0.42}Co_{0.58}, ImFe^{1,3} and ImCo². The volume of a single cage calculated from the crystal structure with PLATON program⁴

	Phase II ($R\overline{3}m$)	Phase III ($R\overline{3}$)	Phase IV (A2/a)
ImFe _{0.42} Co _{0.58}	588.6	576.5	732.2
ImFe ^{1,3}	586.9	570.1	728.5
ImCo ²	578.9	560.1	728.4

- Zhang, W.; Cai, Y.; Xiong, R.-G.; Yoshikawa, H.; Awaga, K. Exceptional Dielectric Phase Transitions in a Perovskite-Type Cage Compound. *Angew. Chemie Int. Ed.* 2010, 49, 6608– 6610.
- (2) Zhang, X.; Shao, X.-D.; Li, S.-C.; Cai, Y.; Yao, Y.-F.; Xiong, R.-G.; Zhang, W. Dynamics of a Caged Imidazolium Cation-toward Understanding the Order-Disorder Phase Transition and the Switchable Dielectric Constant. *Chem. Commun.* **2015**, *51*, 4568–4571.
- (3) Phillips, A. E.; Fortes, A. D. Crossover between Tilt Families and Zero Area Thermal Expansion in Hybrid Prussian Blue Analogues. *Angew. Chemie Int. Ed.* **2017**, *56* (50), 15950–15953.
- (4) Van Der Sluis, P.; Spek, A. L. BYPASS: An Effective Method for the Refinement of Crystal Structures Containing Disordered Solvent Regions. *Acta Crystallogr. Sect. A* 1990, *46*, 194– 201.

Fig. S7. Normalized dielectric response for pure **IMCFe** (x=1), **IMCo** (x=0) and for mixed-crystals **IMFe_xCo_{1-x}** (x = 0.29, 0.51, 0.63, 0.70 and 0.85).

Fig. S8. a) IR spectra measured for pure **IMFe** and **IMCo** in KBr. Raman spectra for b) **IMCo** and c) **IMFe**.

Approximate assignments –	IMFe		IMCo	
	IR	Raman	IR	Raman
νN-H				
vN-H				
vC-H				
vC-H				
vC-H				
vC≡N (A₁g)		2126		2143
vC≡N (Eg)		2120		2131
vC≡N (T₁u)	2110		2110	
vC≡N (E _g)		2071 sh		2082 sh
νC=C , δN-H	1624		1628	
νC-N , δC-H	1587	1587	1587	1587
ν C=C , νC-N, δN-C-N, δΝ-Η	1445	1449	1445	1449
δN-H, vC-N	1425		1425	
δC-Η	1308		1308	
vC-N	1200	1197	1200	1197
δ C-H, vC-N, δ N-H	1172		1172	
δC-Η , νC-Ν	1090	1090	1090	1091
δN-H, vC-N	1047		1046	
δN-H, δRing, δC-H				
δRing		916		912
δRing		873		
ρ _{w.} C-H				
ρ _{w.} C-H				
ρ _{w.} C-H				
ρ _{w.} N-H	756		755	
ρ _{w.} N-H				
$\rho_{t.}$ Ring		620		624
$\rho_{t.}$ Ring	620		620	
Linear bending (Co-C≡N) (T₁u)			560	
vFe/Co-C (A _{1g})		383		402
vFe/Co-C (T _{1u})	402		415	
vFe/Co-C (T _{1u})	380		403	
Angled bending (C-Fe/Co-C) (T _{2g}) ,		164		172
Linear bending (C-Fe/Co-C) (T _{2g})		104		175
Angled bending (C-Fe/Co-C) (T_{2g}) ,		130		147
Linear bending (C-Fe/Co-C) (T _{2g})		100		17 <i>2</i>
Angled bending (C-Fe/Co-C) (T _{2g}) , Linear bending (C-Fe/Co-C) (T _{2g})		94		80

Table S9. Observed IR and Raman frequencies (in cm⁻¹) and their assignments for (**IMFe**) and (**IMCo**) perovskites.

 $\nu\text{-streching}, \delta\text{-deformation}$ (bending), $\rho_t\text{-torsion}, \rho_w\text{-wagging}$

Fig. S9. Example of fitting of four peaks assigned to C=N stretching modes in order to estimate stoichiometry of mixed crystals.

X Fe3+	No Peak / Area					
	1 Fe	2 Fe	1 Co	2 Co		
0.29	0.1509	0.3953	0.3263	0.9540		
0.63	0.3466	0.4760	0.1632	0.3084		
0.71	0.3994	0.6408	0.2317	0.1954		
0.85	0.4118	0.9072	0.1312	0.0964		

Table S10. Areas obtained all peaks marked in Fig. S7.

Fig. S10. a) Temperature evolution of bands assigned to Fe/Co-C stretching between 390 and 430 cm⁻¹; (b) temperature dependencies of the band positions.

Fig. S11. a) Temperature evolution of bands assigned to $C\equiv N$ stretching between 2100 and 2140 cm⁻¹; (b) temperature dependencies of the band positions.

Fig. S12. a) Temperature evolution of bands assigned to out-of-plane hydrogen bond (N-H…N) vibration between 720 and 820 cm⁻¹; (b) temperature dependencies of the band positions.

Fig. S13. a) Temperature evolution of bands assigned to imidazolium ring deformation between 880 and 940 cm⁻¹; (b) temperature dependencies of the band positions.

Fig. S14. NIR spectra versus temperature measured for pure IMCo and IMFe monocrystals