Supporting Information

Hierarchical Mo-doped CoP₃ Interconnected Nanosheet Arrays on Carbon Cloth as an Efficient Bifunctional Electrocatalyst for Water Splitting in Alkaline Electrolyte

Shasha Zhang, Mingjing Guo, Shuyi Song, Ke Zhan, Ya Yan, Junhe Yang, Bin Zhao*

School of Materials Science and Engineering, University of Shanghai for Science and

Technology, Shanghai 200093, China

Figure S1. XRD patterns of CoMo₂-OH @CC.

Figure S2. SEM images of CC.

Figure S3. SEM images of (a) Mo-CoP₃-1@CC, (b) Mo-CoP₃-2@CC, (c) Mo-CoP₃-3@CC, and (d) Mo-CoP₃-4@CC.

Figure S5. Cyclic voltammograms for catalysts with different Mo/Co ratios and CoP_3 in the region of +0.1 to +0.2 V at scan rates of 10, 20, 40, 60, 80, 100, 120 mV s⁻¹.

Figure S6. SEM images of the Mo-CoP₃-2@CC: (a) after HER stability test; (b) after OER stability test.

Figure S7. XPS survey spectra (a) and high-resolution spectra for the Mo-CoP₃-2@CC before and after stability test: (b) Co 2p; (c) Mo 3d; (d) P 2p; (e) O 1s.

Figure S8. Faradaic efficiency of H_2 and O_2 production.

Materials	Mass loading (mg cm- ²)	Water electrolysis test (1.0M KOH)	Over-potential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Ref.
Co-P film	2.6	HER	94	42	1
		OER	345	47	
		Over water splitting	>400	-	
CoP-MNA	6.2	HER	54	51	2
		OER	290	65	
		Over water splitting	390	89	
CoP/NC	0.283	HER	154	51	3
		OER	319	52	
		Over water splitting	>470	-	
CoS- Co(OH) ₂ @ aMoS _{2+x}	0.2	HER	143	68	4
		OER	380	68	
		Over water splitting	350	-	
CoP/rGO	~0.28	HER	150	38	5
		OER	340	66	
		Over water splitting	470	-	

Table S1. Comparison of representative Co phosphides and CoMo-based watersplitting catalysts in alkaline electrolyte.

CoMoS₄/CC	~1.0	HER	143	105	6
		OER	342	-	
		Over water splitting	490	-	
NiCo ₂ O ₄	-	HER	110	49.7	7
		OER	290	53	
		Over water splitting	420	-	
Mn-CoP ₃	-	HER	95	83	8
		OER	280	63	
		Over water splitting	360	-	
Fe-CoP ₃ NAs/CC	1.03	HER	167	65.1	9
		OER	330 (ŋ ₅₀)	82.5	
		Over water splitting	-	-	
CoMoO NSs@NF	-	HER	173	190.1	10
		OER	270	54.4	
		Over water splitting	450	-	
CoO/MoO _x	0.7	HER	163	44	. 11
		OER	310 (ŋ ₂₀₎	-	
		Over water splitting	490	-	
Mo- CoP3@CC	2.0-3.0	HER	62	55.7	This work
		OER	300	71.4	
		Over water splitting	420	-	

References

[1] N. Jiang, B. You, M. L. Sheng and Y. J. Sun, Angew. Chem. Int. Ed., 2015, 54, 6251-6254.

[2] Y. P. Zhu, Y. P. Liu, T. Z. Ren and Z. Y. Yuan, Adv. Func. Mater., 2015, 25, 7337-7347.

[3] B. You, N. Jiang, M. L. Sheng, S. Gul, J. Yano and Y. J. Sun, *Chem. Mater.*, 2015, 27,7636-7642.

- [4] T. Yoon and K. S. Kim, Adv. Func. Mater., 2016, 26, 7386-7393.
- [5] L. Jiao, Y. X. Zhou and H. L. Jiang, Chem. Sci., 2016, 7, 1690-1695.
- [6] Y. Sun, C. D. Wang, T. Ding, J. Zuo and Q. Yang, Nanoscale, 2016, 8, 18887-18892.
- [7] X. H. Gao, H. X. Zhang, Q. G. Li, X. G. Yu, Z. L. Hong, X. W. Zhang, C. D. Liang and Z. Lin. Angew. Chem. Int. Ed., 2016, 55, 6290-6294.
- [8] J. J. Feng, X. D. Wang, D. K. Zhang, Y. Wang, J. Wang, M. Y. Pi, H. P. Zhou, J. H. Li and S. J. Chen, *J. Electrochem. Soc.*, 2018, 165, F1323-F1330.
- [9] L. Lin, Q. Fu, Y. P. Han, J. N. Wang, X. Q. Zhang, Y. H. Zhang, C. Hu, Z. G. Liu, Y. Sui and
- X. J. Wang, J. Alloys and Compd., 2019, 808, 151767.
- [10] Y. Zhang, Q. Shao, S. Long and X. Q. Huang, Nano Energy, 2018, 45, 448-455.
- [11] X. Yan, L. Tian, S. Atkins, Y. Liu, J. Murowchick, X. Chen, ACS Sustainable Chem. Eng. 2016, 4, 3743.