Supporting information

Electronic strain effect on Eu(III) complexes for enhanced circularly polarized luminescence

Makoto Tsurui,^a Yuichi Kitagawa,^{b,c} Koji Fushimi,^b Masayuki Gon,^d Kazuo Tanaka,^d and Yasuchika Hasegawa^{*b,c}

^a Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan
^b Faculty of Engineering, Kita 13, Nishi 8, Kita-ku Sapporo, 060-8628, Japan.
^c Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
^d Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan Scheme S1 Synthetic scheme of Eu(III) complexes.

Preparation of (*S*,*S*)-2,3-Bis(*tert*-butylmethylphosphineoxide)quinoxaline ((*S*,*S*)-B2QPO): (*S*,*S*)-B2QPO was synthesized by the same procedure as described for the (*R*,*R*)-B2QPO. Yield: 61%. ¹H NMR (400 MHz, CDCl₃/TMS, 25°C): $\delta = 8.14$ (dd, J = 6.4, 3.7 Hz, 2H), 7.92 (dd, J = 6.4, 3.7 Hz, 2H), 2.11 (d, J = 12.3 Hz, 6H), 1.43 (d, J = 14.6 Hz, 18H) ppm. IR (ATR): v = 2822-2999 (m, C-H), 1151 (s, P=O) cm⁻¹. APCI-MS (*m*/*z*): calcd for C₁₈H₂₉N₂O₂P₂ [*m* + H]⁺: 367.2, found 367.2.

Preparationof(S)-2-tert-butylmethylphophineoxide-3-(di-tert-butylphosphineoxide)quinoxaline)((S)-B3QPO):(S)-B3QPO was synthesized by thesame procedure as described for the (R)-B3QPO. Yield: 82%. ¹H NMR (400 MHz,CDCl₃/TMS, 25°C): δ = 8.23-8.09 (m, 2H), 7.98-7.85 (m, 2H), 2.24 (d, J = 12.8 Hz, 3H),1.55-1.25 (m, 27H) ppm. IR (ATR):v = 2861-2967 (m, C-H), 1161 (s, P=O) cm⁻¹. APCI-MS (m/z):calcd for C₂₁H₃₅N₂O₂P₂ [m + H]⁺: 409.2, found 409.2.

Preparation of [Eu(hfa)₃(H₂O)₂] (hfa: hexafluoroacetylacetonato): [Eu(hfa)₃(H₂O)₂] was prepared with the procedure described in previous report¹.

Preparation of [Eu(hfa)₃((*S***,***S***)-B2QPO)]: [Eu(hfa)₃((***S***,***S***)-B2QPO)] was synthesized by the same procedure as described for the [Eu(hfa)₃((***R***,***R***)-B2QPO)]. Yield: 45%. ESI-Mass (***m***/***z***): [M–hfa]⁺ calcd. for C_{28}H_{30}EuF_{12}N_2O_6P_2, 933.06; found, 933.10. Anal. calcd. for C_{33}H_{31}EuF_{18}N_2O_8P_2, C 34.78, H 2.74, N 2.46; found, C 34.36, H 2.53, N 2.29%. FT-IR (ATR) : 1652 (st, C=O), 1252 (st, C-F), 1141 (st, P=O) cm⁻¹.**

Preparation of [Eu(hfa)₃((*S***)-B3QPO)]: [Eu(hfa)₃((***S***)-B3QPO)] was synthesized by the same procedure as described for the [Eu(hfa)₃((***R***)-B3QPO)]. Yield: 42%. ESI-Mass (***m/z***): [M-hfa]^+ calcd. for C₃₁H₃₆EuF₁₂N₂O₆P₂, 975.11; found, 975.11. Anal. calcd. for C₃₆H₃₇EuF₁₈N₂O₈P₂, C 36.59, H 3.16, N 2.37; found, C 36.55, H 2.99, N 2.28%. FT-IR (ATR) : 1650 (st, C=O), 1251 (st, C-F), 1140 (st, P=O) cm⁻¹.**

Preparation of [Gd(hfa)_3(H_2O)_2]: [Gd(hfa)_3(H_2O)_2] was synthesized by the same procedure as described for the [Eu(hfa)_3(H_2O)_2].

Preparation of [Gd(hfa)₃((*R***,***R***)-B2QPO)]: [Gd(hfa)₃((***R***,***R***)-B2QPO)] was synthesized by the same procedure as described for the [Eu(hfa)₃((***R***,***R***)-B2QPO)]. Yield 45%. ESI-Mass (***m/z***): [M–hfa]⁺ calcd. for C₂₈H₃₀GdF₁₂N₂O₆P₂, 938.06; found, 938.06. Anal. calcd. for C₃₃H₃₁GdF₁₈N₂O₈P₂, C 34.62, H 2.73, N 2.45; found, C 34.34, H 2.56, N 2.34%. FT-IR (ATR) : 1653 (st, C=O), 1253 (st, C-F), 1139 (st, P=O) cm⁻¹.**

Preparation of [Gd(hfa)₃((*R***)-B3QPO)]: [Gd(hfa)₃((***R***)-B3QPO)] was synthesized by the same procedure as described for the [Eu(hfa)₃((***R***)-B3QPO)]. Yield 43%. ESI-Mass (m/z): [M-hfa]⁺ calcd. for C₃₁H₃₆GdF₁₂N₂O₆P₂, 980.11; found, 980.11. Anal. calcd. for**

C₃₆H₃₇GdF₁₈N₂O₈P₂, C 36.43, H 3.14, N 2.36; found, C 36.34, H 3.00, N 2.29%. FT-IR (ATR) : 1650 (st, C=O), 1250 (st, C-F), 1137 (st, P=O) cm⁻¹.

	[Eu(hfa)((R,R)-	[Eu(hfa)((<i>S</i> , <i>S</i>)-	$[Eu(hfa)_3((R)-$	$[Eu(hfa)_3((S)-$
	B2QPO)]	B2QPO)]	B3QPO)]	B3QPO)]
Chemical formula	$C_{33}H_{31}EuF_{18}N_2O_8P_2$	$C_{33}H_{31}EuF_{18}N_2O_8P_2$	$C_{36}H_{37}EuF_{18}N_2O_8P_2$	$C_{36}H_{37}EuN_2O_8F_{18}P_2$
Formula weight	1139.50	1139.50	1181.57	1181.57
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	P2 ₁ (#4)	P2 ₁ (#4)	P2 ₁ (#4)	P2 ₁ (#4)
<i>a</i> / Å	11.6631(2)	11.6679(3)	11.19040(10)	11.2020(2)
b / Å	19.2898(2)	19.2967(4)	20.5895(2)	20.6003(3)
<i>c</i> / Å	20.1981(2)	20.2075(4)	20.3663(2)	20.3840(4)
α / deg.	90	90	90	90
eta / deg.	93.5450(10)	93.568(2)	99.7900(10)	99.687(2)
γ / deg.	90	90	90	90
Volume / Å ³	4535.45(10)	4540.94(18)	4624.16(8)	4636.83(14)
Ζ	4	4	4	4
Temperature / K	123.15	123.15	123.15	123.15
$d_{\rm calc}$ / g cm ⁻³	1.669	1.667	1.697	1.693
Radiation	MoK α (λ =	MoK α (λ =	MoK α (λ =	MoK α (λ =
	0.71073)	0.71073)	0.71073)	0.71073)
Reflections collected	85714	108043	137245	108302
Goodness-of-fit on F ²	1.053	1.042	1.031	1.033
R_1	0.0439	0.0418	0.0240	0.0303
WR_2	0.1177	0.1141	0.0572	0.0711
Flack parameter	0.000(4)	-0.005(4)	-0.012(3)	0.000(4)

Table S1. X-ray crystal data of Eu(III) complexes

	Gd(hfa)(R,R-B2QPO)	Gd(hfa)(R-B3QPO)
Chemical formula	$C_{33}H_{31}F_{18}GdN_2O_8P_2\\$	$C_{36}H_{37}F_{18}GdN_2O_8P_2\\$
Formula weight	1144.79	1186.86
Crystal system	monoclinic	monoclinic
Space group	$P2_1$	P2 ₁ (#4)
<i>a</i> / Å	11.6565(2)	11.16540(10)
b / Å	19.2883(3)	20.5710(2)
<i>c</i> / Å	20.1991(3)	20.3672(2)
α / deg.	90	90
β / deg.	93.4630(10)	99.6950(10)
γ / deg.	90	90
Volume / Å ³	4533.15(12)	4611.20(8)
Ζ	4	4
Temperature / K	123.15	123.15
$d_{\rm calc}$ / g cm ⁻³	1.677	1.710
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
Reflections collected	127032	119067
Goodness-of-fit on F ²	1.031	1.026
R_1	0.0395	0.0212
WR_2	0.1070	0.0512
Flack parameter	-0.006(3)	-0.007(2)

 Table S2. X-ray crystal data of Gd(III) complexes

Figure S1. Simulated XRD patterns of i) $[Eu(hfa)_3((R,R)-B2QPO)]$, ii) $[Gd(hfa)_3((R,R)-B2QPO)]$, iii) $[Eu(hfa)_3((R)-B3QPO)]$, and iv) $[Gd(hfa)_3((R)-B3QPO)]$ from CIF files.

The absorption spectra of chiral phosphine oxide ligands, precursor complex ([Eu(hfa)₃(H₂O)₂]), and chiral Eu(III) complexes are shown in Figure S1. The absorption bands at 300-350 nm are attributed to π - π * transitions of hfa and phosphine oxide ligands. The bands at around 250 nm are attributed to the existing of phosphine oxide ligands.

Figure S2. UV-vis absorption spectra of (a) $[Eu(hfa)_3((R,R)-B2QPO)]$ ((i), red line), $[Eu(hfa)_3(H_2O)_2]$ ((ii), black line) and (R,R)-B2QPO ((iii), blue line), (b) $[Eu(hfa)_3((R)-B3QPO)]$ ((iv), red line), $[Eu(hfa)_3(H_2O)_2]$ ((v), black line) and (R)-B3QPO ((vi), blue line) in dichloromethane (1.0×10⁻⁴ M) at room temperature.

Figure S3. (a) ³¹P and (b) ¹⁹F NMR (400 MHz) spectra of ligands ((R,R)-B2QPO, (R)-B3QPO) and complexes ([Eu(hfa)₃((R,R)-B2QPO)], [Eu(hfa)₃((R)-B3QPO)]).

Figure S4. Molecular orbitals of $[Al(hfa)_3((R,R)-B2QPO)]$ and $[Al(hfa)_3((R)-B3QPO)]$

Table S3. Calculated HOMO, HOMO-1, and HOMO-2 energy levels of $[Al(hfa)_3((R,R)-B2QPO)]$ and $[Al(hfa)_3((R)-B3QPO)]$ obtaind by DFT calculations.

Complay	Energy level / eV			
Complex	НОМО	HOMO-1	HOMO-2	
$[Al(hfa)_3((R,R)-B2QPO)]$	-6.050	-6.173	-6.437	
$[Al(hfa)_3((R)-B3QPO)]$	-6.216	-6.259	-6.302	

Reference

 Y. Hasegawa, Y. Wada, S. Yanagida, H. Kawai, N. Yasuda and T. Nagamura, Polymer thin films containing Eu(III) complex as lanthanide lasing medium, *Appl. Phys. Lett.*, 2003, 83, 3599–3601.