Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting information for:

Efficient alkane hydroxylation catalysis of Nickel(II) complexes with oxazoline donor containing tripodal tetradentate ligands

Ikumi Terao, Sena Horii, Jun Nakazawa, Masaya Okamura, Shiro Hikichi*

Department of Material and Life Chemistry

Faculty of Engineering

Kanagawa University

3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)

Fax: +81-45-413-9770

*E-mail: hikichi@kanagawa-u.ac.jp

Contents

- Table S1 Cyclohexane- d_{12} oxidation mediated by 1 and 7
- Table S2 Toluene oxidation mediated by 1 and 7
- Table S3 Crystallographic data for 1-5
- Fig. S1 UV-vis spectra of CH_2Cl_2 solutions of 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f)
- Fig. S2 ESI-MS spectra of MeCN solutions of 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f)
- Fig. S3 IR spectra of KBr pellet of **1** (a), **2** (b), **3** (c), **4** (d), **5** (e) and **6** (f)
- Fig. S4 1 H NMR spectra of 1 (a), 2 (b), 4 (c), 5 (d) and 6 (e)
- Fig. S5 Time course of total TON of the acetate complexes 1 and 7 on cyclohexane oxidation
- Fig. S6 Differential pulse voltammograms of the acetate complexes 1 and 7 in MeCN with $0.1 \text{ M}^{n}\text{Bu}_4\text{NPF}_6$
- Fig. S7 Time course of total TON of the TOA^{Me2} complexes 1 4 on cyclohexane oxidation
- Fig. S8 Time course of total TON of the Tp* and To^M complexes 8 10 on cyclohexane oxidation
- Fig. S9 Time course of total TON of the chlorido complexes 4 6 on cyclohexane oxidation
- Fig. S10 Decay of the acylperoxido species in CH₂Cl₂ (a) or CD₂Cl₂ (b) at 25°C

Complex	Substrate ·	Products / µmol							
		A	K	L	Cy-Cl	Ph-Cl	· TON	A/(A +L)	NIE ²
1	$C_{6}H_{12}$	1526.7	218.6	12.8	111.7	1056.7	995	6.6	2.67
1	C ₆ D ₁₂	571.5	69.2	36.0	63.2	430.8	423	5.4	2.07
7	C ₆ H ₁₂	1197.8	110.5	59.5	119.3	771.1	829	7.0	2 74
7	C ₆ D ₁₂	320.3	93.9	16.7	199.3	280.1	370	2.9	3.74

¹TON = $(\mathbf{A} + 2 \times \mathbf{K} + 2 \times \mathbf{L} + \mathbf{Cy} - \mathbf{Cl})$ / Ni ²KIE = \mathbf{A} from C₆H₁₂ / \mathbf{A} from C₆D₁₂

complex	1	$2 \cdot 2 CH_2 Cl_2$	3	
Formula	C44H53BN4NiO5	C44H54BCl4N5NiO6	C ₄₉ H ₅₆ BClN ₄ NiO ₆	
Formula Weight	787.42	960.24	901.93	
Space Group	<i>P</i> – <i>1</i> (No. 2)	<i>P</i> 2 ₁ / <i>n</i> (No. 14)	<i>Fdd2</i> (No. 43)	
Crystal System	triclinic	monoclinic	orthorhombic	
<i>a</i> / Å	11.790(6)	14.544(5)	63.3792(17)	
<i>b</i> / Å	13.799(6)	11.405(4)	58.8576(15)	
<i>c</i> / Å	15.362(7)	28.205(10)	9.7929(2)	
lpha / °	64.129(15)	90	90	
eta / °	83.65(2)	102.024(4)	90	
γ / Å	81.82(2)	90	90	
V / Å3	2222.6(18)	4576(3)	36530.9(15)	
Ζ	2	4	32	
<i>F</i> (000)	836	2008	15232	
$D(\text{calced}) / \text{g} \cdot \text{cm}^{-1}$	1.177	1.394	1.312	
Temp.//K	293(2)	113(2)	113(2)	
$\mu(Mo_{K\alpha}) / cm^{-1}$	4.82	7.10	5.37	
$2 heta_{ m max}$ / °	54.898	54.968	54.962	
Measured reflections	9293	10430	20846	
Observed reflections	((1)	7617	10007	
$(I > 2\sigma(I))$	0015	/01/	19997	
Parameters	496	565	1145	
$\mathbf{R} (I > 2\sigma(\mathbf{I}) / \operatorname{all}^{(a)})$	0.0437 / 0.0618	0.0661 / 0.0807	0.0370 / 0.0394	
wR	0.1589	0.1974	0.0770	
Goodness of fit S ^(b)	0.725	1.040	1.152	

Table S3. Crystallographic data for 1 - 5.

(a) $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. $R_w = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2]\}^{1/2}$. (b) $S = \{\Sigma [w(F_0^2 - F_c^2)^2] / (n - p)\}^{1/2}$, where *n* is the number of reflections and *p* is the total number of parameters refined.

complex	4	5		
Formula	C ₄₂ H ₅₀ B ₁ ClN ₄ NiO ₃	C48H62BCIN4NiO3		
Formula Weight	763.83	847.98		
Space Group	$P2_1/c$ (No. 14)	<i>P</i> 2 ₁ (No. 4)		
Crystal System	monoclinic	monoclinic		
<i>a</i> / Å	14.905(7)	12.0793(6)		
<i>b</i> / Å	24.920(12)	13.4525(5)		
<i>c</i> / Å	10.988(5)	15.1350(6)		
α / °	90	90		
eta / °	102.752(4)	111.020(2)		
γ / Å	90	90		
V / Å ³	3981(3)	2295.73(17)		
Ζ	4	2		
<i>F</i> (000)	1616	904		
$D(\text{calced}) / \text{g} \cdot \text{cm}^{-1}$	1.275	1.227		
Temp.//K	113(2)	133(2)		
$\mu(Mo_{K\alpha}) / cm^{-1}$	5.97	5.25		
$2 heta_{ m max}$ / °	54.606	54.962		
Measured reflections	8761	9223		
Observed reflections	(000	7510		
$(I > 2\sigma(I))$	6909	/510		
Parameters	476	532		
$R(I > 2\sigma(I) / all^{(a)})$	0.0667 / 0.0788	0.0214 / 0.0246		
wR	0.1957	0.0438		
Goodness of fit S ^(b)	1.077	0.892		

Table S3. (continued)

(a) $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. $R_w = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2]\}^{1/2}$. (b) $S = \{\Sigma [w(F_0^2 - F_c^2)^2] / (n - p)\}^{1/2}$, where *n* is the number of reflections and *p* is the total number of parameters refined.

Fig. S1 UV-vis spectra of CH_2Cl_2 solutions of 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f).

Fig. S1 (continued)

Fig. S1 (continued)

Fig. S2 ESI-MS spectra of MeCN solutions of **1** (a), **2** (b), **3** (c), **4** (d), **5** (e) and **6** (f).

200

50

0

330.04010-

/337.09294

338.09884

339.09540

400

447.12744

485.21100

600 *m / z* 1000

800

Fig. S2 (continued)

Fig. S3 IR spectra of KBr pellet of **1** (a), **2** (b), **3** (c), **4** (d), **5** (e) and **6** (f)

Fig. S3 (continued)

Fig. S3 (continued)

Fig. S4 ¹H NMR spectra of KBr pellet of **1** (a), **2** (b), **4** (c), **5** (d) and **6** (e)

Fig. S4 (continued)

Fig. S4 (continued)

Fig. S4 (continued)

Fig. S4 (continued)

Fig. S5 Time course of total TON of the acetate complexes 1 and 7 on cyclohexane oxidation

Fig. S6 Differential pulse voltammograms of the acetate complexes 1 and 7 in MeCN with 0.1 M $^{n}Bu_{4}NPF_{6}$

Fig. S7 Time course of total TON of the TOA^{Me2} complexes 1 - 4 on cyclohexane oxidation

Fig. S8 Time course of total TON of the Tp* and To^M complexes 8 - 10 on cyclohexane oxidation

Fig. S9 Time course of total TON of the chlorido complexes 4-6 on cyclohexane oxidation

Fig. S10 Decay of the acylperoxido species in CH_2Cl_2 (a) or CD_2Cl_2 (b) at 25°C.