Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

SUPPLEMENTARY INFORMATION

Diamidophosphites from β -Hydroxyamides: Readily Assembled Ligands for Pd-Catalyzed Asymmetric Allylic Substitution

Ilya V. Chuchelkin, Konstantin N. Gavrilov, Nataliya E. Borisova, Alexander M. Perepukhov, Alexander V. Maximychev, Sergey V. Zheglov, Vladislav K. Gavrilov, Ilya D. Firsin, Vladislav S. Zimarev, Igor S. Mikhel, Victor A. Tafeenko, Elena V. Murashova, Vladimir V. Chernyshev and Nataliya S. Goulioukina

TABLE OF CONTENTS

General	S2
Experimental section	S5
NMR spectra of new compounds	S50
X-ray structure determinations	S142
HPLC traces for the Pd-catalyzed allylic substitution	S179
Studies of intramolecular rotation in N-Boc-proline derivatives	S181

GENERAL

³¹P, ¹³C and ¹H NMR spectra were recorded with Bruker AMX 400 (162.0 MHz for ³¹P, 100.6 MHz for ¹³C and 400.1 MHz for ¹H), Avance 600 (242.9 MHz for ³¹P, 150.9 MHz for ¹³C and 600.1 MHz for ¹H) and Varian Inova 500 (202.3 MHz for ³¹P, 125.7 MHz for ¹³C and 499.8 MHz for ¹H) instruments. ¹H and ¹³C NMR signals were attributed using APT, DEPT, COSY, NOESY, HSQC and HMBC techniques. The chemical shifts are referenced to residual solvent peaks (¹H, ¹³C NMR) or H₃PO₄ 85% as external standard $(^{31}P NMR)$. Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, m = multiplet, vt = virtual triplet). The X-ray data of 4, L3d and $[Pd(allyl)(L3d)_2]BF_4$ were collected by using STOE diffractometer Pilatus100K detector, focusing mirror collimation Cu Ka (1.54086 Å) radiation, rotation method mode. STOE X-AREA software was used for cells refinement and data reduction. Data collection and image processing was performed with X-Area 1.67 (STOE & Cie GmbH, Darmstadt, Germany, 2013). Intensity data were scaled with LANA (part of X-Area) in order to minimize differences of intensities of symmetry-equivalent reflections (multi-scan method). The structures were solved and refined with SHELX^[1] program. The non-hydrogen atoms were refined by using the anisotropic full matrix least-square procedure. Hydrogen atoms were placed in the calculated positions and allowed to ride on their parent atoms [C-H 0.93-0.98; Uiso 1.2 Ueq (parent atom)]. Molecular geometry calculations were performed with the SHELX program, and the molecular graphics were prepared by using DIAMOND^[2] software. The molecular structure of **L1d** was confirmed by X-ray structure determination from powder data measured at room temperature on the laboratory diffractometer Stoe Stadi-P equipped with curved germanium monochromator (Cu K_{α 1} radiation, λ = 1.54059 Å) and linear detector. The powder pattern was indexed in triclinic unit cell, and the crystal structure was solved with the use of simulated annealing technique^[3] and refined with the program MRIA^[4] following the known procedures described by us earlier.^[5-8] The molecular structure and portion of the crystal packing of L1d prepared with Mercury.^[9] CCDC 1966050, 1908962, 1908958, 1908963 of L1d, L3d, [Pd(allyl)(L3d)₂]BF₄ and 4 respectively, contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif. HPLC analyses were performed on a Stayer instrument using Kromasil 5-CelluCoat, Daicel Chiralcel OD-H columns. Optical rotations were measured with an Atago AP-300 polarimeter. Elemental analyses were performed on a CHN-microanalyzer Carlo Erba EA1108 CHNS-O.

All calculations were performed using the resources of the Joint Supercomputer Center (JSC) supercomputer MVS-1000M (www.jscc.ru). The gradient-corrected exchange-correlation Perdew, Burke, and Ernzerhof (PBE) functional^[10, 11] was used for calculations. The efficient resolution of identity

GENERAL

(RI) and parallel implementation of evaluating both Coulomb and exchange-correlation integrals with optimized fitting Gaussian basis sets in the PRIRODA code permits the performance of calculations of the molecular systems with a large number of basis functions.^[12] A large integration grid (which comprises about 800 000 points over calculated molecules) with a 5 x 10^{-8} accuracy parameter of the adaptively generated grid was used. This parameter is responsible for the precision of the exchangecorrelation energy per atom. The 10⁻⁶ threshold on the orbital gradients at the energy calculation stage and 10^{-5} threshold on the molecular gradient at the geometry optimization procedure were employed. In all calculations the spin-restricted formalism was chosen. For all atoms TZ2P valence basis set and triple-f effective core potentials for C, N, O, P atoms.^[13] All geometries for the reaction species and transition states were completely optimized without any symmetry constraints. Systematic vibrational analysis was performed to confirm whether an optimized geometry corresponds to a transition state with only one imaginary frequency or to a local minimum without an imaginary frequency. Zero-pointvibrational-energy (ZPVE) corrections were taken into account in calculating the energies of the stable rotamers. A rigid rotor and harmonic oscillator models were used for evaluation of the temperature (at 298 K) and entropy corrections for subsequent calculation of the Gibbs energies of the whole processes under discussion.

All reactions were carried out under a dry argon atmosphere in flame-dried glassware and in freshly dried and distilled solvents. For example, toluene and tetrahydrofuran were freshly distilled from sodium benzophenone ketyl before use; dichloromethane was distilled from NaH. Triethylamine and pyrrolidine were distilled over KOH and then over a small amount of LiAlH₄ before use. PCl₃ was freshly distilled. Thin-layer chromatography was performed on E. Merck pre-coated silica gel 60 F254 and Macherey-Nagel Alugram Alox N/UV₂₅₄ plates. Column chromatography was performed using silica gel MN Kieselgel 60 (230 – 400 mesh) and MN-Aluminum oxide, basic, Brockmann Activity 1.

The following compounds were synthesized according to literature procedures: *tert*-butyl (1-hydroxy-2-methylpropan-2-yl)carbamate (**1a**),^[14] *tert*-butyl (*S*)-(1-hydroxy-3,3-dimethylbutan-2-yl)carbamate (**1b**),^[15] *tert*-butyl ((2*S*,3*S*)-1-hydroxy-3-methylpentan-2-yl)carbamate (**1c**),^[16] *tert*-butyl (*S*)-(1-hydroxy-4-(methylthio)butan-2-yl)carbamate (**1d**),^[16, 17] *tert*-butyl (*S*)-2-(hydroxymethyl)pyrrolidine-1-carboxylate (**2**),^[18] (5*S*)-2-chloro-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane and (5*R*)-2-chloro-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane and (5*R*)-2-chloro-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane ((5*S*)- and (5*R*)-**5**),^[19] 2-chloro-1,3-diphenyl-1,3,2-diazaphospholidine (**6**),^[20] [Pd(allyl)Cl]₂^[21] and (*E*)-1,3-diphenylallyl ethyl carbonate (**7**).^[22] Pseudodipeptides **3a-c, 3e, 3f** and **4** were synthesized according to reported procedure^[23] and have been successfully characterized. Pd-catalyzed allylic alkylation of **7** with dimethyl malonate, its

GENERAL

amination with pyrrolidine, allylic alkylation of cinnamyl acetate (**9**) with ethyl 2-oxocyclohexane-1carboxylate (**10**) or ethyl 2-oxocyclopentane-1-carboxylate (**12**) were performed according to the appropriate procedures.^[19, 6, 24]

Dimethyl malonate, BSA (*N*,*O*-bis(trimethylsilyl) acetamide), cinnamyl acetate (**9**), ethyl 2oxocyclohexane-1-carboxylate (**10**) and ethyl 2-oxocyclopentane-1-carboxylate (**12**) were purchased from Aldrich and Acros Organics.

- 1. G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
- 2. K. Brandenburg, DIAMOND, Release 2.1d; Crystal Impact GbR: Bonn, Germany, **2000**.
- 3. S. G. Zhukov, V. V. Chernyshev, E. V. Babaev, E. J. Sonneveld, H. Z. Schenk, Kristallogr. 2001, 216, 5.
- 4. V. B. Zlokazov, V. V. Chernyshev, J. Appl. Crystallogr. 1992, 25, 447.
- 5. K. N. Gavrilov, I. S. Mikhel, I. V. Chuchelkin, S. V. Zheglov, V. K. Gavrilov, K. P. Birin, V. A. Tafeenko, V. V. Chernyshev, N. S. Goulioukina, I. P. Beletskaya, *Chemistry Select*, **2016**, *1*, 4173.
- K. N. Gavrilov, S. V. Zheglov, V. K. Gavrilov, M. G. Maksimova, V. A. Tafeenko, V. V. Chernyshev, K. P. Birin, I. S. Mikhel, *Tetrahedron*, 2017, 73, 461.
- K. N. Gavrilov, S. V. Zheglov, I. V. Chuchelkin, M. G. Maksimova, I. D. Firsin, A. N. Fitch, V. V. Chernyshev, A. V. Maximychev, A. M. Perepukhov, *Tetrahedron: Asymmetry*, 2017, 28, 1633.
- 8. K. N. Gavrilov, I. S. Mikhel, S. V. Zheglov, V. K. Gavrilov, I. V. Chuchelkin, I. D. Firsin, K. P. Birin, I. S. Pytskii, K. A. Paseshnichenko, V. A. Tafeenko, V. V. Chernyshev, A. A. Shiryaev, *Org. Chem. Front.*, **2019**, *6*, 1637.
- 9. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, J. *Appl. Cryst.*, **2006**, *39*, 453.
- 10. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 11. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396.
- 12. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.
- 13. D. N. Laikov, Chem. Phys. Lett., 2005, 416, 116.
- 14. J. J. Posakony, J. R. Grierson, T. J. Tewson, J. Org. Chem., 2002, 67, 5164.
- 15. S. M. Ali, M. Z. Hoemann, J. Aube, L. A. Mitscher, G. I. Georg, J. Med. Chem., 1996, 38, 3821.
- 16. D. Yang, P. Wang, J. Liu, H. Xing, Y. Liu, W. Xie, G. Zhao, *Bioorg. Med. Chem.*, **2014**, *22*, 366.
- 17. G. Desimoni, G. Dusi, G. Faita, P. Quadreni, P. Righetti, *Tetrahedron*, **1995**, *51*, 4131.
- 18. G. A. Molander, J. A. C. Romero, *Tetrahedron*, **2005**, *61*, 2631.
- 19. V. N. Tsarev, S. E. Lyubimov, A. A. Shiryaev, S. V. Zheglov, O. G. Bondarev, V. A. Davankov, A. A. Kabro, S. K. Moiseev, V. N. Kalinin, K. N. Gavrilov, *Eur. J. Org. Chem.*, **2004**, 2214.
- 20. M. R. Marre, M. Sanchez, J. F. Brazier, R. Wolf, J. Bellan, *Can. J. Chem.*, **1982**, *60*, 456.
- 21. P. R. Auburn, P. B. Mackenzie, B. Bosnich, J. Am. Chem. Soc., **1985**, 107, 2033.
- 22. T. Hayashi, A. Yamamoto, Y. Ito, E. Nishioka, H. Miura, K. Yanagi, J. Am. Chem. Soc., 1989, 111, 6301.
- 23. D. Ghosh, A. Sadhukhan, N. C. Maity, S. H. R. Abdi, N. H. Khan, R. I. Kureshy, H. C. Bajaj, *RSC Adv.*, **2014**, *4*, 12257.
- 24. a) T. Nemoto, T. Matsumoto, T. Masuda, T. Hitomi, K. Hatano, Y. Hamada, *J. Am. Chem. Soc.*, **2004**, *126*, 3690; b) T. Nemoto, T. Masuda, T. Matsumoto, Y. Hamada, *J. Org. Chem.*, **2005**, *70*, 7172.

tert-butyl (2-((1-hydroxy-2-methylpropan-2-yl)amino)-2-oxoethyl)carbamate (**3a**): White solid, yield 2.586 g (70 %). ¹H NMR (600.1 MHz, CDCl₃, 19.7 °C): δ = 1.29 (s, 6H), 1.44 (s, 9H), 3.58 (br.s, 2H), 3.71 (br.s, 2H), 5.42 (br.s, 1H), 6.40 (br.s, 1H), ppm. ¹³C{¹H} NMR (150.9 MHz, CDCl₃, 23.10 °C): δ = 24.43, 28.22, 44.92, 56.02, 69.73, 155.59, 170.15 ppm. C₁₁H₂₂N₂O₄ (246.31): calcd. C 53.64, H 9.00, N 11.37; found C 53.72, H 8.97, N 11.41.

tert-butyl (2-((2-hydroxy-1,1-diphenylethyl)amino)-2-oxoethyl)carbamate (**3b**): White solid, yield 4.056 g (73 %). ¹H NMR (499.9 MHz, CDCl₃, ambient temperature): δ = 1.44 (s, 9H), 3.83 (d, ³J(H,H) = 5.9 Hz, 1H), 4.40 (s, 1H), 5.26 (br.s, 1H), 7.15 (br.s, 1H), 7.27-7.36 (m, 10H) ppm. ¹³C{¹H} NMR (125.7 MHz, CDCl₃, ambient temperature): δ = 28.25, 45.62, 68.73, 69.13, 80.81, 127.24, 127.66, 128.53, 142.19, 156.28 (br), 170.43 ppm. C₂₁H₂₆N₂O₄ (370.45): calcd. C 68.09, H 7.07, N 7.56; found C 68.17, H 7.02, N 7.61.

tert-butyl (*R*)-(2-((1-hydroxybutan-2-yl)amino)-2-oxoethyl)carbamate (**3c**): White solid, yield 2.882 g (78 %). ¹H NMR (499.9 MHz, CDCl₃, ambient temperature): δ = 0.95 (t, ³J(H,H) = 7.6 Hz, 3H), 1.46 (s, 9H), 1.49-1.55 (m, 1H), 1.58-1.66 (m, 1H), 2.84 (br.s, 1H), 3.57 (dd, ²J(H,H) = 11.2 Hz, ³J(H,H) = 5.6 Hz, 1H), 3.70 (dd, ²J(H,H) = 11.2 Hz, ³J(H,H) = 3.7 Hz, 1H), 3.74-3.84 (m, 2H), 3.84-3.90 (m, 1H), 5.22-5.37 (br.m, 1H), 6.26-56.43, (br.m, 1H) ppm. ¹³C{¹H} NMR (125.7 MHz, CDCl₃, ambient temperature): δ = 10.38, 24.12, 28.29, 44.70 (br), 53.40, 64.67, 80.41 (br), 156.29 (br), 170.27 ppm. C₁₁H₂₂N₂O₄ (246.31): calcd. C 53.64, H 9.00, N 11.37; found C 53.79, H 8.95, N 11.22.

tert-butyl ((2*S*,3*S*)-1-(((2*S*,3*S*)-1-hydroxy-3-methylpentan-2-yl)amino)-3-methyl-1-oxopentan-2-yl)carbamate (**3e**): White solid, yield 3.319 g (67 %). ¹H NMR (400.1 MHz, CDCl₃, 27.0 °C): δ = 0.88-0.97 (m, 12H), 1.10-1.21 (m, 2H), 1.45 (s, 9H), 1.47-1.58 (m, 2H), 1.60-1.71 (m, 1H), 1.86-1.96 (m, 1H), 2.52 (br.s, 1H), 3.65 (dd, ²J(H,H) = 11.4 Hz, ³J(H,H) = 6.1 Hz, 1H), 3.73 (dd, ²J(H,H) = 11.4 Hz, ³J(H,H) = 3.5 Hz, 1H), 3.77-3.83 (m, 1H), 3.88 (t, ³J(H,H) = 7.0 Hz, 1H), 4.96-5.13 (br.m, 1H), 6.18-6.32 (br.m, 1H) ppm. ¹³C{¹H} NMR (125.7 MHz, CDCl₃, ambient temperature): δ = 11.17, 15.50, 15.61, 24.89, 25.41, 28.27, 35.39, 36.52, 56.08, 59.94 (br), 63.40, 80.09 (br), 156.05, 172.31 ppm. C₁₇H₃₄N₂O₄ (330.25): calcd. C 61.79, H 10.37, N 8.48; found C 61.70, H 10.43, N 8.52.

tert-butyl (*S*)-(2-((1-hydroxy-4-(methylthio)butan-2-yl)amino)-2-oxoethyl)carbamate (**3f**): White solid, yield 2.982 g (68 %). ¹H NMR (499.9 MHz, CDCl₃, ambient temperature): δ = 1.45 (s, 9H), 1.76-1.83 (m, 1H), 1.83-1.90 (m, 1H), 2.09 (s, 3H), 2.49-2.58 (m, 2H), 3.43 (br.s, 1H), 3.59 (br.dd, ²*J*(H,H) = 11.2 Hz, ³*J*(H,H) = 5.2 Hz, 1H), 3.68 (dd, ²*J*(H,H) = 11.2 Hz, ³*J*(H,H) = 3.7 Hz, 1H), 3.74 (br.dd, ²*J*(H,H) = 16.6 Hz,

 ${}^{3}J(H,H) = 5.2$ Hz, 1H), 3.81 (dd, ${}^{2}J(H,H) = 16.6$ Hz, ${}^{3}J(H,H) = 6.0$ Hz, 1H), 4.02-4.13 (br.m, 1H), 5.51 (br.s, 1H), 6.72 (d, ${}^{3}J(H,H) = 8.3$ Hz, 1H) ppm. ${}^{13}C{}^{1}H{}$ NMR (125.7 MHz, CDCl₃, ambient temperature): $\delta = 15.49$, 28.32, 30.61, 30.71, 44.71 (br), 51.20, 64.54, 80.47 (br), 156.28 (br), 170.17 ppm. $C_{12}H_{24}N_2O_4S$ (292.39): calcd. C 49.29, H 8.27, N 9.58; found C 49.25, H 8.31, N 9.67.

tert-butyl (*S*)-2-((1-hydroxy-2-methylpropan-2-yl)carbamoyl)pyrrolidine-1-carboxylate (**4**): White solid, yield 3.170 g (64 %). ¹H NMR (499.9 MHz, CD₃OD, ambient temperature): δ = 1.29 (s, 6H), 1.45 (s, 9H), 1.80-1.87 (m, 1H), 1.90-1.98 (m, 2H), 2.07-2.27 (br.m, 1H), 3.38-3.43 (m, 1H), 3.42-3.53 (br.m, 2H), 3.56-3.72 (br.m, 1H), 4.11-4.13 (m, 1H) ppm. ¹³C{¹H} NMR (125.7 MHz, CDCl₃, ambient temperature): δ = 24.43, 24.63, 28.28, 47.05, 55.74, 60.95 (br), 69.64 (br), 80.53, 155.45 (br), 172.81 (br) ppm. C₁₄H₂₆N₂O₄ (286.37): calcd. C 58.72, H 9.15, N 9.78; found C 58.95, H 9.12, N 9.75.

General Procedure for the Preparation of Ligands: The relevant *N*-Boc-amino alcohol **1a-d**, **2** or pseudodipeptides **3b**, **3c**, **3e**, **3f**, **4** (2 mmol) was added in one portion to a vigorously stirred solution of the appropriate phosphorylating reagent (5*S*)-**5**, (5*R*)-**5** or **6** (2 mmol) and Et₃N (0.56 mL, 4 mmol) in toluene (15 mL) at 20 °C. The mixture that obtained was stirred for 24 h at 20 °C. The resulting suspension was filtered through a short plug of SiO₂/Al₂O₃, the column was washed with toluene (2 x 15 mL), and the solvent was evaporated under reduced pressure (40 Torr). Products were additionally purified by flash chromatography on SiO₂ (toluene). The obtained ligands were dried in vacuum (1 Torr) for 1 h (16 h of further high vacuum (10⁻³ Torr) drying is necessary for the preparation of analytically pure samples).

(2R,5S)-2-[2-((*tert*-butoxycarbonyl)amino)-2-methylpropoxy]-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane (**L1a**): Colorless oil, yield 0.724 g (92 %). ¹H NMR (400.1 MHz, CDCl₃, 26 °C): δ = 1.27 (s, 3H; CH₃), 1.29 (s, 3H; CH₃), 1.44 (s, 9H; (CH₃)₃C), 1.65-1.70 (m, 1H; C<u>H₂</u>), 1.75-1.82 (m, 1H; NCH₂C<u>H₂</u>), 1.85-1.92 (m, 1H; NCH₂C<u>H₂</u>), 2.04-2.11 (m, 1H; C<u>H₂</u>), 3.19-3.24 (m, 1H; NC<u>H₂</u>CH), 3.21-3.27 (m, 1H; NC<u>H₂</u>CH₂), 3.34 (dd, ²J(H,H) = 10.2 Hz, ³J(H,P) = 5.4 Hz, 1H; POCH₂), 3.56-3.62 (m, 1H; NC<u>H₂</u>CH₂), 3.69 (br.t, ²J(H,H) ~ ³J(H,P) = 9.0 Hz, 1H; POCH₂), 3.80 (t, ²J(H,H) ~ ³J(H,H) = 8.1 Hz, 1H; NC<u>H₂</u>CH), 4.17-4.21 (m, 1H; NCH₂C<u>H</u>), 5.33 (br.s, 1H; NH), 6.87 (t, ³J(H,H) = 7.8 Hz, 1H; CH_{para}), 7.04 (d, ³J(H,H) = 7.8 Hz, 2H; CH_{ortho}), 7.25-7.28 (m, 2H; CH_{meta}) ppm. ¹³C{¹H} NMR (150.9 MHz, CDCl₃, 27 °C): δ = 23.66 (s, CH₃), 23.75 (s; CH₃), 26.19 (d, ³J(C,P) = 3.5 Hz; NCH₂C<u>H</u>₂), 28.50 (s; (CH₃)₃C), 32.07 (s; C<u>H</u>₂), 48.66 (d, ²J(C,P) = 37.9 Hz; NCH₂CH₂), 52.47 (d, ³J(C,P) = 2.1 Hz; C(CH₃)₂), 55.09 (d, ²J(C,P) = 6.7 Hz; NCH₂CH), 63.08 (d, ²J(C,P) = 8.5 Hz; NCH₂C<u>H</u>), 69.42 (d, ²J(C,P) = 5.1 Hz; POCH₂), 78.47 (s; (CH₃)₃C), 114.79 (d, ³J(C,P) = 11.5 Hz; CH_{ortho}), 119.10 (s; CH_{para}), 129.17 (s; CH_{meta}), 145.51 (d, ²J(C,P) = 16.0 Hz; CNP), 154.85 (s; CO) ppm. ³¹P{¹H} NMR

(202.4 MHz, CDCl₃, ambient temperature): δ = 123.59 (s) ppm. C₂₀H₃₂N₃O₃P (393.47): calcd. C 61.05, H 8.20, N 10.68; found C 61.26, H 8.28, N 10.54.

 $(2R,5S)-2-[(S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutoxy]-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane (L1b): Colorless oil, yield 0.784 g (93 %). ¹H NMR (499.9 MHz, CDCl₃, ambient temperature): δ = 0.94 (s, 9H; (C<u>H₃)₃CCH), 1.41 (s, 9H; (C<u>H₃)₃C</u>), 1.62-1.68 (m, 1H; C<u>H₂), 1.73-1.82 (m, 1H; NCH₂CH₂), 1.83-1.90 (m, 1H; NCH₂C<u>H₂), 2.03-2.10 (m, 1H; CH₂), 3.18-3.22 (m, 1H; NCH₂CH), 3.22-3.29 (m, 1H; NC<u>H₂CH₂), 3.44-3.48 (m, 1H; (CH₃)₃CC<u>H</u>), 3.53-3.59 (m, 1H; NC<u>H₂CH₂), 3.64-3.68 (m, 1H; POCH₂), 3.75 (t, ²J(H,H) ~ ³J(H,H) = 8.0 Hz, 1H; NC<u>H₂CH</u>), 3.85-3.89 (m, 1H; POCH₂), 4.11-4.16 (m, 1H; NCH₂C<u>H</u>), 5.08 (br.d, ³J(H,H) = 9.5 Hz, 1H; NH), 6.85 (t, ³J(H,H) = 7.2 Hz, 1H; CH_{para}), 7.01 (d, ³J(H,H) = 7.8 Hz, 2H; CH_{ortho}), 7.25 (t, ³J(H,H) = 7.8 Hz, 2H; CH_{meta}) ppm. ¹³C{¹H} NMR (125.7 MHz, CDCl₃, ambient temperature): δ = 26.16 (d, ³J(C,P) = 4.8 Hz; NCH₂C₂L₂), 27.10 (s; (CH₃)₃CCH), 28.36 (s; (CH₃)₃C), 32.17 (s; CH₂), 34.46 (br.s; (CH₃)₃CCH), 48.62 (d, ²J(C,P) = 38.1 Hz; NCH₂CH₂), 54.79 (d, ²J(C,P) = 6.7 Hz; NCH₂CH), 58.00 (br.s; (CH₃)₃CCH), 62.30 (br.s; POCH₂), 63.28 (d, ²J(C,P) = 8.6 Hz; NCH₂C₂H), 78.63 (br.s; (CH₃)₃C), 114.86 (d, ³J(C,P) = 12.4 Hz; CH_{ortho}), 118.99 (s; CH_{para}), 129.06 (s; CH_{meta}), 145.50 (d, ²J(C,P) = 15.3 Hz; CNP), 156.09 (s; CO) ppm. ³¹P{¹H} NMR (162.0 MHz, CDCl₃, 27 °C): δ = 125.59 (s) ppm. C₂₂H₃₆N₃O₃P (421.52): calcd. C 62.69, H 8.61, N 9.97; found C 62.93, H 8.70, N 9.76.$ </u></u></u></u></u>

Figure S2a. ¹H NMR Signal Assignment for **L1b**.

Figure S2b. ¹³C NMR Signal Assignment for L1b.

(2R,5S)-2-[(2S,3S)-2-((tert-butoxycarbonyl)amino)-3-methylpentyloxy]-3-phenyl-1,3-diaza-2-pho-sphabicyclo[3.3.0]octane (L1c): Colorless oil, yield 0.759 g (90 %). ¹H NMR (600.1 MHz, CDCl₃, 16 °C): δ = 0.86 (t, ³*J*(H,H) = 7.4 Hz, 3H; CH₃CH₂), 0.89 (d, ³*J*(H,H) = 6.7 Hz, 3H; CH₃CH), 1.01-1.09 (m, 1H; CH₃CH₂), 1.45-1.53 (m, 1H; CH₃CH₂), 1.58-1.67 (br.m, 1H; CH₃CH) 1.37 (s, 9H; (CH₃)₃C), 1.61-1.67 (m, 1H; CH₂), 1.72-1.80 (m, 1H; NCH₂CH₂), 1.83-1.89 (m, 1H; NCH₂CH₂), 2.03-2.08 (m, 1H; CH₂), 3.16-3.21 (m, 1H; NCH₂CH), 3.18-3.24 (m, 1H; NCH₂CH₂), 3.43-3.47 (m, 1H; NHCH), 3.53-3.57 (m, 1H; NCH₂CH₂), 3.55-3.58 (m, 1H; POCH₂), 3.75 (t, ²*J*(H,H) ~ ³*J*(H,H) = 8.0 Hz, 1H; NCH₂CH), 3.80-3.84 (m, 1H; POCH₂), 4.12-4.17 (m, 1H; NCH₂CH), 4.95 (br.d, ³*J*(H,H) = 9.0 Hz, 1H; NHCH), 6.84 (t, ³*J*(H,H) = 7.4 Hz, 1H; CH_{para}), 7.00 (d, ³*J*(H,H) = 7.7 Hz, 2H; CH_{ortho}), 7.24 (t, ³*J* $(H,H) = 7.9 Hz, 2H; CH_{meta}) ppm. ¹³C{¹H} NMR (150.9 MHz, CDCl₃, 15 °C): δ = 11.44 (s; CH₃CH₂), 15.27 (s; CH₃CH), 25.22 (s; CH₃CH₂), 26.11 (d, ³$ *J*(C,P) = 3.4 Hz; NCH₂CH₂), 28.27 (s; (CH₃)₃C), 32.00 (s; CH₂), 35.55 (s; CH₃CH), 48.66 (d, ²*J*(C,P) = 37.9 Hz; NCH₂CH₂), 54.70 (br.s; NHCH), 54.90 (d, ²*J*(C,P) = 6.9 Hz; NCH₂CH), 62.13 (d, ²*J*(C,P) = 3.4 Hz; POCH₂), 63.10 (d, ²*J*(C,P) = 9.2 Hz; NCH₂CH), 78.72 (br.s; (CH₃)₃C), 114.63 (d, ³*J*(C,P) = 11.5 Hz; CH_{ortho}), 118.91 (s; CH_{para}), 129.07 (s; CH_{meta}), 145.40 (d, ²*J* $(C,P) = 16.1 Hz; CNP), 155.74 (s; CO) ppm. ³¹P{¹H} NMR (162.0 MHz, CDCl₃, 27 °C): δ = 124.46 (s) ppm. C₂₂H₃₆N₃O₃P (421.52): calcd. C 62.69, H 8.61, N 9.97; found C 62.98, H 8.55, N 10.11.$

(2R,5S)-2-[(S)-2-((*tert*-butoxycarbonyl)amino)-4-(methylthio)butoxy]-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane (**L1d**): White solid, yield 0.791 g (90 %). ¹H NMR (499.9 MHz, CDCl₃, ambienttemperature): δ = 1.38 (s, 9H; (C<u>H₃)₃C</u>), 1.61-1.67 (m, 1H; C<u>H₂</u>), 1.75-1.82 (m, 1H; NCH₂C<u>H₂</u>), 1.75-1.86(m, 2H; SCH₂C<u>H₂</u>), 1.82-1.90 (m, 1H; NCH₂C<u>H₂</u>), 2.02-2.07 (m, 1H; C<u>H₂</u>), 2.09 (s, 3H; CH₃), 2.50 (t, ³*J*(H,H) =7.6 Hz, 2H; SC<u>H₂CH₂</u>), 3.18-3.25 (m, 1H; NC<u>H₂CH</u>), 3.18-3.25 (m, 1H; NC<u>H₂CH₂</u>), 3.52-3.58 (m, 1H;NC<u>H₂CH₂</u>), 3.58-3.64 (br.m, 1H; POCH₂), 3.72-3.77 (m, 1H; POCH₂), 3.73-3.78 (m, 1H; NHC<u>H</u>), 3.75-3.78(m, 1H; NC<u>H₂CH</u>), 4.12-4.18 (m, 1H; NCH₂C<u>H</u>), 4.91-5.05 (br.m, 1H; N<u>H</u>CH), 6.85 (t, ³*J*(H,H) = 7.3 Hz, 1H;CH_{para}), 7.01 (d, ³*J*(H,H) = 7.8 Hz, 2H; CH_{ortho}), 7.24 (t, ³*J* $(H,H) = 8.0 Hz, 2H; CH_{meta}) ppm. ¹³C{¹H} NMR$ (125.7 MHz, CDCl₃, ambient temperature): δ = 15.42 (s; <u>C</u>H₃), 26.20 (d, ³*J*(C,P) = 3.9 Hz; NCH₂CH₂), 28.33(s; (<u>C</u>H₃)₃C), 30.70 (s; S<u>C</u>H₂CH₂), 31.76 (s; SCH₂<u>C</u>H₂), 32.18 (s; <u>C</u>H₂), 48.51 (d, ²*J*(C,P) = 37.4 Hz; N<u>C</u>H₂CH₂),50.24 (br.s; NH<u>C</u>H), 54.76 (d, ²*J*(C,P) = 7.1 Hz; N<u>C</u>H₂CH), 63.28 (d, ²*J*(C,P) = 8.5 Hz; NCH₂<u>C</u>H), 64.16 (s;POCH₂), 79.04 (br.s; (CH₃)₃<u>C</u>), 114.90 (d, ³*J*(C,P) = 12.1 Hz; CH_{ortho}), 119.43 (s; CH_{para}), 129.12 (s; CH_{meta}),145.45 (d, ²*J* $(C,P) = 15.5 Hz; CNP), 155.43 (s; CO) ppm. ³¹P{¹H} NMR (202.4 MHz, CDCl₃, ambient$ temperature): δ = 125.22 (s) ppm. C₂₁H₃₄N₃O₃PS (439.55): calcd. C 57.38, H 7.80, N 9.56; found C 57.56,H 7.88, N 9.59.

Figure S4a. ¹H NMR Signal Assignment for **L1d**.

Figure S4b. ¹³C NMR Signal Assignment for L1d.

(2R,5S)-2-[((S)-1-(tert-butoxycarbonyl)pyrrolidin-2-yl)methoxy]-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane (L2): Colorless oil, yield 0.762 g (94 %). ¹H NMR (600.1 MHz, CD₃C₆D₅, -20 °C): δ = 1.06-1.11 (m, 1H; CH₂), 1.17-1.27 (m, 1H; NCH₂CH₂), 1.21-1.27 (m, 1H; CH₂CH₂NBoc), 1.28-1.38 (m, 1H; NCH₂CH₂), 1.45 (s, 9H; (CH₃)₃C), 1.45-1.56 (br.m, 1H; CH₂CHNBoc), 1.46-1.51 (m, 1H; CH₂CH₂NBoc), 1.46-1.53 (m, 1H; CH₂), 1.84-1.92 (br.m, 1H; CH₂CHNBoc), 2.62 (br.t, 1H; NCH₂CH), 2.86-2.92 (m, 1H; NCH₂CH₂), 2.99-3.03 (m, 1H; CH₂CH₂NBoc), 3,08-3.11 (m, 1H; CH₂CH₂NBoc), 3.25-3.31 (m, 1H; NCH₂CH), 3.32-3.40 (m, 1H; NCH₂CH₂), 3.35-3.41 (m, 1H; POCH₂), 3.96-4.00 (m, 1H; NCH₂CH), 4.12-4.17 (br.m, 1H; POCH₂), 4.13-4.19 (m, 1H; CH₂CHNBoc), 6.85 (t, ³J(H,H) = 7.0 Hz, 1H; CH_{para}), 7.07 (d, ³J(H,H) = 8.1 Hz, 2H; CH_{ortho}), 7.21 (t, ³J(H,H) = 7.7 Hz, 2H; CH_{meta}) (major rotamer), 1.12-1.16 (m, 1H; CH_2), 1.16-1.21 (m, 1H; CH₂CH₂NBoc), 1.17-1.27 (m, 1H; NCH₂CH₂), 1.28-1.38 (m, 1H; NCH₂CH₂), 1.35-1.39 (m, 1H; CH₂CH₂NBoc), 1.45-1.56 (br.m, 1H; CH₂CHNBoc), 1.47 (s, 9H; (CH₃)₃C), 1.50-1.57 (m, 1H; CH₂), 1.79-1.82 (m, 1H; CH₂CHNBoc), 2.67 (br.t, 1H; NCH₂CH), 2.93-2.97 (m, 1H; NCH₂CH₂), 3.22-3.28 (m, 2H; CH₂CH₂NBoc), 3.25-3.31 (m, 1H; NCH₂CH), 3.32-3.40 (m, 1H; NCH₂CH₂), 3.35-3.41 (m, 1H; POCH₂), 3.81-3.85 (m, 1H; NCH₂CH), 3.85-3.90 (m, 1H; CH₂CHNBoc), 3.90-3.95 (br.m, 1H; POCH₂), 6.85 (t, ³/(H,H) = 7.0 Hz, 1H; CH_{para}), 7.07 (d, ³J(H,H) = 8.1 Hz, 2H; CH_{ortho}), 7.21 (t, ³J(H,H) = 7.7 Hz, 2H; CH_{meta}) (minor rotamer) ppm. ¹³C{¹H} NMR (150.9 MHz, CD₃C₆D₅, -20 °C): δ = 23.47 (s; CH₂CH₂NBoc), 25.91 (d, ³J(C,P) = 3.1 Hz; NCH₂CH₂), 27.74 (s; CH₂CHNBoc), 28.34 (s; (CH₃)₃C), 31.56 (s; CH₂), 46.84 (s; CH₂CH₂NBoc), 48.80 (d, $^{2}J(C,P) = 39.8 \text{ Hz}; \text{ NCH}_{2}\text{CH}_{2}), 55.25 \text{ (d, }^{2}J(C,P) = 6.6 \text{ Hz}; \text{ NCH}_{2}\text{CH}), 57.49 \text{ (d, }^{3}J(C,P) = 2.0 \text{ Hz}; \text{ CH}_{2}\text{CHNBoc}),$

61.81 (d, ²*J*(C,P) = 6.6 Hz; POCH₂), 62.69 (d, ²*J*(C,P) = 8.6 Hz; NCH₂<u>C</u>H), 78.33 (s; (CH₃)₃<u>C</u>), 114.92 (d, ³*J*(C,P) = 11,2 Hz; CH_{ortho}), 118.77 (s; CH_{para}), 129.17 (s; CH_{meta}), 146.19 (d, ²*J*(C,P) = 15.8 Hz; CNP), 154.15 (s; CO) (major rotamer), 22.58 (s; <u>C</u>H₂CH₂NBoc), 25.98 (d, ³*J*(C,P) = 3.6 Hz; NCH₂<u>C</u>H₂), 28.36 (s; (<u>C</u>H₃)₃C), 28.82 (s; <u>C</u>H₂CHNBoc), 31.67 (s; <u>C</u>H₂), 46.72 (s; CH₂<u>C</u>H₂NBoc), 48.95 (d, ²*J*(C,P) = 39.8 Hz; N<u>C</u>H₂CH₂), 55.01 (d, ²*J*(C,P) = 7.1 Hz; N<u>C</u>H₂CH), 57.32 (d, ³*J*(C,P) = 2.5 Hz; CH₂<u>C</u>HNBoc), 62.58 (d, ²*J*(C,P) = 5.1 Hz; POCH₂), 63.27 (d, ²*J*(C,P) = 8.6 Hz; NCH₂<u>C</u>H), 78.34 (s; (CH₃)₃<u>C</u>), 114.91 (d, ³*J*(C,P) = 11,7 Hz; CH_{ortho}), 119.10 (s; CH_{para}), 129.32 (s; CH_{meta}), 145.99 (d, ²*J*(C,P) = 16.3 Hz; CNP), 153.75 (s; CO) (minor rotamer) ppm. ³¹P{¹H} NMR (242.9 MHz, CD₃C₆D₅, -20 °C): δ = 122.80 (s) (major rotamer), 125.09 (s) (minor rotamer) ppm. C₂₁H₃₂N₃O₃P (405.48): calcd. C 62.21, H 7.96, N 10.36; found C 62.47, H 8.01, N 10.25.

Figure S5a. ¹H NMR Signal Assignment for **L2**.

Figure S5b. ¹³C NMR Signal Assignment for L2.

 $(2R,5S)-2-[2-(2-((tert-butoxycarbonyl)amino)acetamido)-2-methylpropoxy]-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane (L3a): White solid, yield 0.883 g (98 %). ¹H NMR (499.9 MHz, CDCl₃, ambient temperature): <math>\delta = 1.31$ (s, 3H; CH₃), 1.32 (s, 3H; CH₃), 1.46 (s, 9H; (CH₃)₃C), 1.62-1.68 (m, 1H; CH₂), 1.72-1.81 (m, 1H; NCH₂CH₂), 1.84-1.91 (m, 1H; NCH₂CH₂), 2.03-2.10 (m, 1H; CH₂), 3.15-3.22 (m, 1H; NCH₂CH₂), 3.43-3.56 (br.m, 2H; CH₂NHBoc), 3.51 (br.dd, ²J(H,H) = 10.1 Hz, ³J(H,P) = 6.4 Hz, 1H; POCH₂), 3.55-3.60 (m, 1H; NCH₂CH₂), 3.63 (dd, ²J(H,H) = 10.1 Hz, ³J(H,P) = 6.4 Hz, 1H; POCH₂), 3.80 (t, ²J(H,H) ~ ³J(H,H) = 8.1 Hz, 1H; NCH₂CH), 4.15-4.20 (m, 1H; NCH₂CH), 4.92 (br.s, 1H; CH₂NHBoc), 6.1 (br.s, 1H; CNH), 6.86 (t, ³J(H,H) = 7.3 Hz, 1H; CH_{para}), 7.03 (d, ³J(H,H) = 7.8 Hz, 2H; CH_{ortho}), 7.26 (t, ³J(H,H) = 7.3 Hz, 2H; CH_{meta}) ppm. ¹³C{¹H} NMR (150.9 MHz, CDCl₃, 24 °C): δ = 23.36 (s, CH₃), 23.68 (s; CH₃), 26.07 (d, ³J(C,P) = 4.0 Hz; NCH₂CH₂), 53.70 (s; CNH), 55.00 (d, ²J(C,P) = 6.9 Hz; NCH₂CH), 63.19 (d, ²J(C,P) = 9.2 Hz; NCH₂CH), 68.36 (d, ²J(C,P) = 6.3 Hz; POCH₂), 79.64 (s; (CH₃)₃C), 114.64 (d, ³J(C,P) = 12.1 Hz; CH_{ortho}), 118.98 (s; CH_{para}), 129.08 (s; CH_{meta}), 145.36 (d, ²J(C,P) = 15.5 Hz; CNP), 155.73 (br.s; C(O)O), 168.33 (s; CO) ppm. ³¹P{¹H} NMR (202.4 MHz, CDCl₃, ambient temperature): δ = 123.10 (s) ppm. C₂₂H₃₅N₄O₄P (450.52): calcd. C 58.65, H 7.83, N 12.44; found C 58.87, H 7.93, N 12.56.

Figure S6a. ¹H NMR Signal Assignment for L3a.

Figure S6b. ¹³C NMR Signal Assignment for L3a.

(2R,5S)-2-[2-(2-((tert-butoxycarbonyl)amino)acetamido)-2,2-diphenylethoxy]-3-phenyl-1,3-diaza-2phosphabicyclo[3.3.0]octane (L3b): White solid, yield 1.057 g (92 %). ¹H NMR (600.1 MHz, CDCl₃, 22 °C): 1.46 (s, 9H; (CH₃)₃C), 1.60-1.65 (m, 1H; CH₂), 1.71-1.78 (m, 1H; NCH₂CH₂), 1.83-1.89 (m, 1H; NCH₂CH₂), 2.02-2.08 (m, 1H; CH₂), 3.14-3.19 (m, 1H; NCH₂CH), 3.15-3.21 (m, 1H; NCH₂CH₂), 3.54-3.60 (br.m, 1H; CH₂NHBoc), 3.63-3.69 (br.m, 1H; CH₂NHBoc), 3.52-3.57 (m, 1H; NCH₂CH₂), 3.78 (t, ²J(H,H) ~ ³J(H,H) = 8,1 Hz, 1H; NCH₂CH), 4.17-4.21 (m, 1H; NCH₂CH), 4.30 (dd, ${}^{2}J$ (H,H) = 10.3 Hz, ${}^{3}J$ (H,P) = 5,1 Hz, 1H; POCH₂), 4.53 (dd, ${}^{2}J(H,H) = 10.5 Hz$, ${}^{3}J(H,P) = 5,3 Hz$, 1H; POCH₂), 5.03 (br.s, 1H; CH₂NHBoc), 6.87 (t, ${}^{3}J(H,H) = 7.3$ Hz, 1H; CH_{para}), 6.95 (d, ³J(H,H) = 7.7 Hz, 2H; CH_{ortho}), 7.08 (br.s, 1H; CNH), 7.20-7.24' (m, 4H; CH_{para}), 7.23 $(t, {}^{3}J(H,H) = 7.3 \text{ Hz}, 2H; CH_{meta}), 7.26-7.30' (m, 6H; CH_{ortho} + CH_{meta}) \text{ ppm}. {}^{13}C{}^{1}H} \text{ NMR} (150.9 \text{ MHz}, CDCl_{3}, CDCl_{3})$ 22 °C): $\delta = 26.11$ (d, ³/(C,P) = 4.0 Hz; NCH₂CH₂), 28.21 (s; (CH₃)₃C), 32.09 (s; CH₂), 44.69 (br.s; CH₂NHBoc), 48.78 (d, ${}^{2}J(C,P) = 37.3$ Hz; NCH₂CH₂), 54.96 (d, ${}^{2}J(C,P) = 7.5$ Hz; NCH₂CH), 63.42 (d, ${}^{2}J(C,P) = 8.6$ Hz; NCH₂CH), 65.23 (s; (Ph₂)CNH), 66.39 (d, ${}^{2}J(C,P) = 6.9$ Hz; POCH₂), 79.78 (br.s; (CH₃)₃C), 114.79 (d, ${}^{3}J(C,P) =$ 12.1 Hz; CH_{ortho}), 119.02 (s; CH_{para}), 127.02' (s; CH_{para}), 127.08'' (s; CH_{para}), 127.18' (s; CH_{meta}), 127.34'' (s; CH_{meta}), 128.00' (s; CH_{ortho}), 128.04'' (s; CH_{ortho}), 129.07 (s; CH_{meta}), 141.68' (s; C_{ipso}), 141.84'' (s; C_{ipso}), 145.32 (d, ²J(C,P) = 17.7 Hz; CNP), 155.86 (br.s; C(O)O), 168.06 (s; CO) ppm. ³¹P{¹H} NMR (202.4 MHz, CDCl₃, ambient temperature): δ = 123.29 (s) ppm. C₃₂H₃₉N₄O₄P (574.66): calcd. C 66.88, H 6.84, N 9.75; found C 67.23, H 6.94, N 9.56.

Figure S7a. ¹H NMR Signal Assignment for **L3b**.

Figure S7b. ¹³C NMR Signal Assignment for L3b.

(2R,5S)-2-[(*R*)-2-(2-((*tert*-butoxycarbonyl)amino)acetamido)butoxy]-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane (**L3c**): White solid, yield 0.883 g (98 %). ¹H NMR (499.9 MHz, CDCl₃, ambient temperature): δ = 0.76 (t, ³/(H,H) = 7.5 Hz, 3H; CH₃CH₂), 1.42-1.53 (m, 2H; CH₃CH₂), 1.46 (s, 9H; (CH₃)₃C), 1.59-1.66 (m, 1H; CH₂), 1.71-1.80 (m, 1H; NCH₂CH₂), 1.82-1.89 (m, 1H; NCH₂CH₂), 2.01-2.08 (m, 1H; CH₂), 3.14-3.19 (m, 1H; NCH₂CH₂), 3.15-3.20 (m, 1H; NCH₂CH), 3.54-3.59 (m, 1H; POCH₂), 3.65-3.79 (br.m, 2H; CH₂NHBoc), 3.69-3.73 (m, 1H; POCH₂), 3.53-3.60 (m, 1H; NCH₂CH₂), 3.84-3.90 (m, 1H; CH₁NH), 3.78 (dd, ²/(H,H) = 8.4 Hz, ³/(H,H) = 7.8 Hz, 1H; NCH₂CH), 4.09-4.14 (m, 1H; NCH₂CH), 5.10 (br.s, 1H; CH₂NHBoc), 6.19 (br.d, ³/(H,H) = 7.6 Hz, 1H; CHNH), 6.84 (t, ³/(H,H) = 7.3 Hz, 1H; CH_{para}), 7.01 (d, ³/(H,H) = 7.6 Hz, 2H; CH_{ortho}), 7.24 (t, ³/(H,H) = 8.0 Hz, 2H; CH_{meta}) ppm. ¹³C{¹H} NMR (125.7 MHz, CDCl₃, ambient temperature): δ = 10.22 (s; CH₃CH₂), 24.51 (s; CH₃CH₂), 26.15 (d, ³/(C,P) = 3.8 Hz; NCH₂CH₂), 28.30 (s; (CH₃)₃C), 32.17 (s; CH₂), 44.38 (br.s; CH₂NHBoc), 48.73 (d, ²/(C,P) = 4.8 Hz; POCH₂), 63.30 (d, ²/(C,P) = 8.6 Hz; NCH₂CH), 79.94 (s; (CH₃)₃C), 114.80 (d, ³/(C,P) = 12.4 Hz; CH_{ortho}), 119.07 (s; CH_{para}), 129.08 (s;

 CH_{meta}), 145.48 (d, ²*J*(C,P) = 16.2 Hz; CNP), 155.77 (br.s; C(O)O), 168.64 (s; CO) ppm. ³¹P{¹H} NMR (202.4 MHz, CDCl₃, ambient temperature): δ = 122.95 (s) ppm. $C_{22}H_{35}N_4O_4P$ (450.52): calcd. C 58.65, H 7.83, N 12.44; found C 58.86, H 7.80, N 12.38.

Figure S8a. ¹H NMR Signal Assignment for L3c.

Figure S8b. ¹³C NMR Signal Assignment for L3c.

(2R,5S)-2-[(2S,3S)-2-((2S,3S)-2-((tert-butoxycarbonyl)amino)-3-methylpentanamido)-3-methylpentyloxy]-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane (L3e): White solid, yield 1.037 g (97 %). ¹H NMR (499.9 MHz, CDCl₃, ambient temperature): $\delta = 0.72$ (d, ³J(H,H) = 6.9 Hz, 3H; CH₃CH), 0.83 (t, ³J(H,H) = 7.5 Hz, 3H; CH₃CH₂), 0.84' (t, ³J(H,H) = 7.5 Hz, 3H; CH₃CH₂), 0.89' (d, ³J(H,H) = 6.9 Hz, 3H; CH₃CH), 1.01-1.10 (m, 1H; CH₃CH₂), 1.01-1.10' (m, 1H; CH₃CH₂), 1.41-1.48 (m, 1H; CH₃CH₂), 1.42-1.49' (m, 1H; CH₃CH₂), 1.43 (s, 9H; (CH₃)₃C), 1.59-1.65 (m, 1H; CH₂), 1.64-1.73' (m, 1H; CH₃CH), 1.65-1.73 (m, 1H; CH₃CH), 1.74-1.81 (m, 1H; NCH₂CH₂), 1.82-1.89 (m, 1H; NCH₂CH₂), 2.02-2.09 (m, 1H; CH₂), 3.14-3.20 (m, 1H; NCH₂CH₂), 3.16-3.21 (m, 1H; NCH2CH), 3.41-3.45 (m, 1H; POCH2), 3.54-3.60 (m, 1H; NCH2CH2), 3.70-3.73 (m, 1H; CHNHBoc), 3.85-3.88 (m, 1H; POCH₂), 3.71-3.74 (m, 1H; NCH₂CH), 3.80-3.85 (m, 1H CHNH), 4.10-4.15 (m, 1H; NCH₂CH), 5.04 (br.d, ³J(H,H) ~ 7.5 Hz, 1H; CH₂NHBoc), 6.03 (br.d, ³J(H,H) ~ 7.51 Hz, 1H; CHNH), 6.83 $(t, {}^{3}J(H,H) = 7.3 Hz, 1H; CH_{para}), 6.99 (d, {}^{3}J(H,H) = 7.8 Hz, 2H; CH_{ortho}), 7.22 (t, {}^{3}J(H,H) = 8.1Hz, 2H; CH_{meta})$ ppm. ${}^{13}C{}^{1}H{}$ NMR (125.7 MHz, CDCl₃, ambient temperature): $\delta = 11.13$ (s; <u>C</u>H₃CH₂), 11.16' (s; <u>C</u>H₃CH₂), 15.17 (s; <u>CH</u>₃CH), 15.38' (s; <u>C</u>H₃CH), 24.77' (s; CH₃<u>C</u>H₂), 25.13 (s; CH₃<u>C</u>H₂), 26.20 (d, ³J(C,P) = 4.8 Hz; NCH₂<u>C</u>H₂), 28.31 (s; (<u>C</u>H₃)₃C), 32.26 (s; <u>C</u>H₂), 35.30 (s; CH₃<u>C</u>H), 36.95' (br.s; CH₃<u>C</u>H), 48.59 (d, ²J(C,P) = 38.1 Hz; NCH₂CH₂), 53.36 (d; ${}^{3}J(C,P)$ = 3.8 Hz; CHNH), 54.86 (d, ${}^{2}J(C,P)$ = 7.6 Hz; NCH₂CH), 59.53 (br.s; CHNHBoc), 61.93 (d, ²J(C,P) = 4.8 Hz; POCH₂), 63.52 (d, ²J(C,P) = 8.6 Hz; NCH₂CH), 79.51 (br.s; (CH₃)₃C), 114.76 (d, ${}^{3}J(C,P)$ = 12.4 Hz; CH_{ortho}), 119.10 (s; CH_{para}), 129.13 (s; CH_{meta}), 145.55 (d, ${}^{2}J(C,P)$ = 16.2 Hz; CNP), 155.67 (br.s; C(O)O), 171.08 (s; CO) ppm. ${}^{31}P{}^{1}H{}$ NMR (162.0 MHz, CDCl₃, 26 °C): δ = 122.47 (s) ppm. C₂₈H₄₇N₄O₄P (534.68): calcd. C 62.90, H 8.86, N 10.48; found C 63.06, H 8.92, N 10.40.

Figure S9b. ¹³C NMR Signal Assignment for L3e.

(2R,5S)-2-[(S)-2-(2-((*tert*-butoxycarbonyl)amino)acetamido)-4-(methylthio)butoxy]-3-phenyl-1,3diaza-2-phospha-bicyclo[3.3.0]octane (**L3f** $): White solid, yield 0.705 g (71 %). ¹H NMR (499.9 MHz, CDCl₃, ambient temperature): <math>\delta$ = 1.47 (s, 9H; (CH₃)₃C), 1.59-1.65 (m, 1H; CH₂), 1.75-1.82 (m, 1H; NCH₂CH₂),

1.82-1.87 (m, 2H; SCH₂C<u>H</u>₂), 1.82-1.90 (m, 1H; NCH₂C<u>H</u>₂), 2.03-2.10 (m, 1H; C<u>H</u>₂), 2.08 (s, 3H; CH₃), 2.48 (t, ³*J*(H,H) = 7.5 Hz, 2H; SC<u>H</u>₂CH₂), 3.15-3.21 (m, 1H; NC<u>H</u>₂CH₂), 3.17-3.22 (m, 1H; NC<u>H</u>₂CH), 3.32-3.45 (br.m, 1H; C<u>H</u>₂NHBoc), 3.50-3.54 (m, 1H; C<u>H</u>₂NHBoc), 3.53-3.61 (m, 1H; NC<u>H</u>₂CH₂), 3.53-3.61 (m, 1H; POCH₂), 3.72-3.76 (m, 1H; POCH₂), 3.79 (dd, ²*J*(H,H) = 8.9 Hz, ³*J*(H,H) = 7,4 Hz, 1H; NC<u>H</u>₂CH), 4.07-4.16 (m, 1H; C<u>H</u>NH), 4.10-4.17 (m, 1H; NCH₂C<u>H</u>), 4.76 (br.s, 1H; CH₂N<u>H</u>Boc), 6.08 (br.d, ³*J*(H,H) = 8.6 Hz, 1H; CHN<u>H</u>), 6.87 (t, ³*J*(H,H) = 7.3 Hz, 1H; CH_{para}), 7.03 (d, ³*J*(H,H) = 7.6 Hz, 2H; CH_{ortho}), 7.26-7.29 (m, 2H; CH_{meta}) ppm. ¹³C{¹H} NMR (125.7 MHz, CDCl₃, ambient temperature): δ = 15.46 (s; CH₃), 26.26 (d, ³*J*(C,P) = 3.9 Hz; NCH₂C<u>H</u>₂), 28.35 (s; (<u>C</u>H₃)₃C), 30.63 (s; S<u>C</u>H₂CH₂), 31.00 (s; SCH₂C<u>H</u>₂), 32.44 (s; <u>C</u>H₂), 44.26 (br.s; <u>C</u>H₂NHBoc), 48.69 (d, ²*J*(C,P) = 38.0 Hz; N<u>C</u>H₂CH₂), 48.82 (s; CHNH), 54.95 (d, ²*J*(C,P) = 7.4 Hz; N<u>C</u>H₂CH), 63.38 (d, ²*J*(C,P) = 5.1 Hz; POCH₂), 63.53 (d, ²*J*(C,P) = 8.8 Hz; NCH₂C<u>H</u>), 80.09 (br.s; (CH₃)₃C), 114.90 (d, ³*J*(C,P) = 12.5 Hz; CH_{ortho}), 119.19 (s; CH_{para}), 129.32 (s; CH_{meta}), 145.59 (d, ²*J*(C,P) = 15.6 Hz; CNP), 155.69 (br.s; C(O)O), 168.76 (s; CO) ppm. ³¹P{¹H} NMR (202.4 MHz, CDCl₃, ambient temperature): δ = 122.26 (s) ppm. C₂₃H₃₇N₄O₄PS (496.61): calcd. C 55.63, H7.51, N 11.28; found C 55.47, H 7.60, N 11.43.

Figure S10a. ¹H NMR Signal Assignment for L3f.

Figure S10b. ¹³C NMR Signal Assignment for L3f.

(25,5R)-2-[(25,3S)-2-((25,3S)-2-((tert-butoxycarbonyl)amino)-3-methylpentanamido)-3-methylpentyloxy]-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane (L3g): White solid, yield 0.952 g (89 %). ¹H NMR (499.9 MHz, CDCl₃, ambient temperature): $\delta = 0.68$ (d, ³J(H,H) = 6.9Hz, 3H; CH₃CH), 0.81 (t, ³J(H,H) = 7.6 Hz, 3H; CH_3CH_2), 0.93' (t, ${}^{3}J(H,H)$ = 7.3 Hz, 3H; CH_3CH_2), 0.94' (d, ${}^{3}J(H,H)$ = 6.4 Hz, 3H; CH_3CH), 0.99-1.08 (m, 1H; CH₃CH₂), 1.13-1.21' (m, 1H; CH₃CH₂), 1.40-1.49 (m, 1H; CH₃CH₂), 1.44 (s, 9H; (CH₃)₃C), 1.51-1.60' (br.m, 1H; CH₃CH₂), 1.55-1.66 (m, 1H; CH₂), 1.56-1.66 (m, 1H; CH₃CH), 1.71-1.81 (m, 1H; NCH₂CH₂), 1.78-1.88 (m, 1H; NCH₂CH₂), 1.80-1.89' (m, 1H; CH₃CH), 1.98-2.05 (m, 1H; CH₂), 3.09-3.16 (m, 1H; NCH₂CH₂), 3.16-3.21 (m, 1H; NCH₂CH), 3.52-3.59 (m, 1H; NCH₂CH₂), 3.56-3.62 (m, 1H; POCH₂), 3.66-3.70 (m, 1H; POCH₂), 3.73-3.78 (m, 1H; NCH₂CH), 3.75-3.81 (m, 1H; CHNH), 3.87 (br.t, ³J(H,H) ~ ³J(H,H) = 7,8 Hz, 1H; CHNHBoc), 4.06-4.11 (m, 1H; NCH₂CH), 5.10 (br.d, ³J(H,H) = 8.3 Hz, 1H; CH₂NHBoc), 6.01 (br.d, ${}^{3}J(H,H) = 9.8$ Hz, 1H; CHN<u>H</u>), 6.84 (t, ${}^{3}J(H,H) = 7.3$ Hz, 1H; CH_{para}), 7.01 (d, ${}^{3}J(H,H) = 7.8$ Hz, 2H; CH_{ortho}), 7.23 (t, ${}^{3}J(H,H) = 7.8$ Hz, 2H; CH_{meta}) ppm. ${}^{13}C{}^{1}H$ NMR (125.7 MHz, CDCl₃, ambient temperature): $\delta =$ 11.00 (s; CH₃CH₂), 11.34' (s; CH₃CH₂), 15.21 (s; CH₃CH), 15.45' (s; CH₃CH), 24.95' (s; CH₃CH₂), 25.30 (s; $CH_{3}CH_{2}$), 26.21 (d, ${}^{3}J(C,P) = 3.8Hz$; $NCH_{2}CH_{2}$), 28.32 (s; (CH_{3})₃C), 32.29 (s; CH_{2}), 35.19 (s; $CH_{3}CH$), 37.26' (s; CH_3CH), 48.59 (d, ²J(C,P) = 38.2 Hz; NCH₂CH₂), 53.35 (d, ³J(C,P) = 2.9 Hz; CHNH), 54.94 (d, ²J(C,P) = 6.7 Hz; NCH₂CH), 59.52 (br.s; CHNHBoc), 61.55 (d, ${}^{2}J(C,P) = 5.7$ Hz; POCH₂), 63.56 (d, ${}^{2}J(C,P) = 8.6$ Hz; NCH₂CH), 79.59 (br.s; (CH₃)₃C), 114.81 (d, ³J(C,P) = 12.4 Hz; CH_{ortho}), 119.05 (s; CH_{para}), 129.04 (s; CH_{meta}), 145.56 (d,

 ${}^{2}J(C,P) = 15.3$ Hz; CNP), 155.64 (br.s; C(O)O), 170.93 (s; CO) ppm. ${}^{31}P{}^{1}H{}$ NMR (202.4 MHz, CDCl₃, ambient temperature): $\delta = 121.46$ (s) ppm. $C_{28}H_{47}N_4O_4P$ (534.68): calcd. C 62.90, H 8.86, N 10.48; found C 63.04, H 8.90, N 10.45.

Figure S11b. ¹³C NMR Signal Assignment for L3g.

(2R,5S)-2-[2-((S)-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxamido)-2-methylpropoxy]-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane (L4): White solid, yield 0.932 g (95 %). ¹H NMR (600.1 MHz, CDCl₃, -20 °C): δ = 1.24 (s, 6H; (CH₃)₂), 1.43 (s, 9H; (CH₃)₃C), 1.61-1.69 (m, 1H; CH₂), 1.61-1.69 (m, 1H; NCH₂CH₂), 1.76-1.85 (m, 1H; NCH₂CH₂), 1.76-1.88 (m, 2H; CH₂CH₂NBoc), 1.92-1.98 (m, 1H; CH₂CHNBoc), 1.96-2.01 (m, 1H; CH2), 2.02-2.08 (m, 1H; CH2CHNBoc), 3.04-3.11 (m, 1H; NCH2CH), 3.04-3.13 (m, 1H; NCH₂CH₂), 3.25 (dd, 2 /(H,H) = 9.5 Hz, 3 /(H,P) = 4.4 Hz, 1H; POCH₂), 3.41-3.45 (m, 2H; CH₂CH₂NBoc), 3.49-3.56 (m, 1H; NCH₂CH₂), 3.69-3.73 (m, 1H; NCH₂CH), 3.75 (dd, 1H; POCH₂), 3.90 (dd, ³J(H,H) = 8.1 Hz, ³J(H,H) = 2.2 Hz, 1H; CH₂CHNBoc), 4.12-4.18 (m, 1H; NCH₂CH), 6.15 (s, 1H; NH), 6.81 (t, ³J(H,H) = 7.3 Hz, 1H; CH_{para}), 6.95-6.98 (m, 2H; CH_{ortho}), 7.22 (t, ³J(H,H) = 7.7 Hz, 2H; CH_{meta}) (major rotamer), 1.29 (s, 6H; (CH₃)₂), 1.45 (s, 9H; (CH₃)₃C), 1.61-1.69 (m, 1H; CH₂), 1.61-1.69 (m, 1H; NCH₂CH₂), 1.71-1.75 (m, 1H; CH₂CHNBoc), 1.76-1.85 (m, 1H; NCH₂CH₂), 1.76-1.88 (m, 2H; CH₂CH₂NBoc), 1.96-2.01, (m, 1H; CH₂), 2.07-2.11 (m, 1H; CH2CHNBoc), 3.02-3.10 (m, 1H; NCH2CH), 3.04-3.13 (m, 1H; NCH2CH2), 3.21-3.25 (m, 1H; CH₂CH₂NBoc), 3.36-3.39 (m, 1H; CH₂CH₂NBoc), 3.37-3.39 (m, 1H; POCH₂), 3.49-3.56 (m, 1H; NCH₂CH₂), 3.69-3.73 (m, 1H; NCH₂CH), 3.72-3.74 (m, 1H; POCH₂), 4.02 (d, ³J(H,H) = 8.1 Hz, 1H; CH₂CHNBoc), 4.12-4.18 (m, 1H; NCH₂C<u>H</u>), 6.78-6.80 (m, 1H; CH_{para}), 6.90 (s, 1H; NH), 6.95-6.98 (m, 2H; CH_{ortho}), 7.19-7.21 (m, 2H; CH_{meta}) (minor rotamer) ppm. ${}^{13}C{}^{1}H$ NMR (150.9 MHz, CDCl₃, -20 °C): δ = 23.09 (s; CH₃), 23.34 (s; CH₃), 23.34 (s; CH₂CH₂NBoc), 25.73 (d, ³J(C,P) = 3.1 Hz; NCH₂CH₂), 28.03 (s; (CH₃)₃C), 30.85 (s; CH₂CHNBoc), 31.45 (s; CH₂), 46.60 (s; CH₂CH₂NBoc), 48.77 (d, ²J(C,P) = 38.7 Hz; NCH₂CH₂), 53.02 (d, ${}^{3}J(C,P) = 2.0 \text{ Hz}; C), 54.88 (d, {}^{2}J(C,P) = 6.1 \text{ Hz}; \text{NCH}_{2}CH), 61.13 (s; CH_{2}CHNBoc), 62.69 (d, {}^{2}J(C,P) = 9.2 \text{ Hz};$ NCH₂<u>C</u>H), 67.52 (d, ²J(C,P) = 8.1 Hz; POCH₂), 79.99 (s; (CH₃)₃<u>C</u>), 114.06 (d, ³J(C,P) = 11.7 Hz; CH_{ortho}), 118.54 (s; CH_{para}), 128.88 (s; CH_{meta}), 145.04 (d, ²J(C,P) = 16.8 Hz; CNP), 154,26 (s; C(O)O), 171.93 (s; CO) (major rotamer), 23.29 (s; CH₃), 23.54 (s; CH₃), 24.15 (s; CH₂CH₂NBoc), 25.73 (d, ³J(C,P) = 3.1 Hz; NCH₂CH₂), 28.03 (s; (CH₃)₃C), 27.86 (s; CH₂CHNBoc), 31.34 (s; CH₂), 46.63 (s; CH₂CH₂NBoc), 48.79 (d, $^{2}J(C,P) = 39.2 \text{ Hz}; \text{ NCH}_{2}\text{CH}_{2}), 53.06 \text{ (d, }^{3}J(C,P) = 2.5 \text{ Hz}; \text{ C}), 55.01 \text{ (d, }^{2}J(C,P) = 6.1 \text{ Hz}; \text{ NCH}_{2}\text{CH}), 59.94 \text{ (s;}$ CH₂CHNBoc), 62.59 (d, ${}^{2}J(C,P) = 9.2$ Hz; NCH₂CH), 66.86 (d, ${}^{2}J(C,P) = 9.2$ Hz; POCH₂), 79.72 (s; (CH₃)₃C), 114.08 (d, ${}^{3}J(C,P) = 11.7$ Hz; CH_{ortho}), 118.35 (s; CH_{para}), 128.76 (s; CH_{meta}), 145.20 (d, ${}^{2}J(C,P) = 16.8$ Hz; CNP), 155.16 (s; C(O)O), 171.23 (s; CO) (minor rotamer) ppm. ${}^{31}P{}^{1}H{}$ NMR (242.9 MHz, CDCl₃, -20 °C): δ = 124.11 (s) (minor rotamer), 124.96 (s) (major rotamer) ppm. C₂₅H₃₉N₄O₄P (490.58): calcd. C 61.21, H 8.01, N 11.42; found C 61.34, H 8.07, N 11.37.

2-[(*R*)-2-(2-((*tert*-butoxycarbonyl)amino)acetamido)butoxy]-1,3-diphenyl-1,3,2-diazaphospholidine (L5): White solid, yield 0.798 g (82 %). ¹H NMR (600.1 MHz, CDCl₃, 25 °C): δ = 0.74 (t, ³*J*(H,H) = 7.3 Hz, 3H; CH₃CH₂), 1.36-1.46 (m, 1H; CH₃CH₂), 1.44-1.52 (m, 1H; CH₃CH₂), 1.46 (s, 9H; (CH₃)₃C), 3.28-3.38 (br.m, 2H; CH₂NHBoc), 3.48 (dd, ²*J*(H,H) = 17.0 Hz, ³*J*(H,H) = 6,0 Hz, 1H; CH₂NHBoc), 3.54-3.61 (m, 2H; POCH₂), 3.74-3.81 (m, 1H; CHNH), 3.74-3.81 (m, 2H; CH₂), 3.87-3.93 (m, 2H; CH₂), 4.66 (br.s, 1H; CH₂NHBoc), 5.81 (br.s, 1H; CHNH), 6.93-6.96 (m, 2H; CH_{para}), 7.16 (d, ³*J*(H,H) = 7.4 Hz, 4H; CH_{ortho}), 7.30-7.35 (m, 4H; CH_{meta}) ppm. ¹³C{¹H} NMR (150.9 MHz, CDCl₃, 25 °C): δ = 10.16 (s; <u>C</u>H₃CH₂), 23.87 (s; CH₃<u>C</u>H₂), 28.17 (s; (<u>C</u>H₃)₃C), 43.93 (br.s; <u>C</u>H₂NHBoc), 47.25 (d, ²*J*(C,P) = 10.3 Hz; CH₂), 47.37 (d, ²*J*(C,P) = 10.3 Hz; CH₂), 50.67 (d, ³*J*(C,P) = 2.3 Hz; CHNH), 63.94 (s; POCH₂), 79.79 (br.s; (CH₃)₃<u>C</u>), 115.08 (d, ³*J*(C,P) = 13.8 Hz; CH_{ortho}), 115.13 (d, ³*J*(C,P) = 13.8 Hz; CH_{ortho}), 119.98 (s; CH_{para}), 120.09 (s; CH_{para}), 129.24 (s; CH_{meta}), 129.31 (s; CH_{meta}), 144.74 (d, ²*J*(C,P) = 17.2 Hz; CNP), 144.89 (d, ²*J*(C,P) = 18.4 Hz; CNP), 155.64 (br.s; C(O)O), 168.76 (s; CO) ppm. ³¹P{¹H} NMR (202.4 MHz, CDCl₃, ambient temperature): δ = 102.78 (s) ppm. C₂₅H₃₅N₄O₄P (486.55): calcd. C 61.71, H 7.25, N 11.52; found C 61.87, H 7.32, N 11.63.

Figure S13a. ¹H NMR Signal Assignment for L5.

Figure S13b. ¹³C NMR Signal Assignment for L5.

General Procedure for the Preparation of Cationic Palladium Complexes of the General Formula [Pd(allyl)(L)₂]BF₄: A solution of the relevant ligand L1d, L3a-g, L4 (0.4 mmol) in CH₂Cl₂ (2 mL) was added dropwise over 30 min to a stirred solution of [Pd(allyl)Cl]₂ (0.037 g, 0.1 mmol) in CH₂Cl₂ (1 mL) at 20 °C. The reaction mixture was stirred for a further 1 h at 20 °C. A solution of AgBF₄ (0.039 g, 0.2 mmol) in THF (2 mL) was added dropwise over 30 min to the resulting solution, and the reaction mixture was stirred for 1.5 h at 20 °C. The precipitate of AgCl formed was separated by centrifugation. Solution was filtered through SiO₂, solvent was removed in vacuum (40 Torr) and the product was dried in air and in vacuum (1 Torr).

[Pd(allyl)(L1d)₂]BF₄: Gray solid, yield 0.218 g (98 %). ¹H NMR^[a] (499.9 MHz, CD₂Cl₂, ambient temperature): δ = 1.41 and 1.42 (s, 18H; (C<u>H</u>₃)₃C), 1.60-1.71 (br.m, 2H; C<u>H</u>₂), 1.63-1.82 (br.m, 4H; SCH₂C<u>H</u>₂), 1.84-1.92 (m, 2H; NCH₂C<u>H</u>₂), 2.00-2.10 (m, 2H; NCH₂C<u>H</u>₂), 2.04 and 2.06 (s, 6H; CH₃), 2.11-2.19 (m, 2H; C<u>H</u>₂), 2.43-2.55 (m, 4H; SC<u>H</u>₂CH₂), 2.58-2.72 (br.m, 1H; CH_{2allyl} (*anti*)), 2.75-2.87' (br.m, 1H; CH_{2allyl} (*anti*)), 2.89-3.04 (br.m, 2H; NC<u>H</u>₂CH), 3.29-3.38 and 3.38-3.45 (br.m, 2H; NC<u>H</u>₂CH₂), 3.40-3.48 and 3.49-3.60 (br.m, 2H; NC<u>H</u>₂CH₂), 3.64-3.77 (br.m, 2H; POCH₂), 3.77-3.90 (br.m, 2H; NHC<u>H</u>), 3.77-3.91 (br.m, 2H; NC<u>H</u>₂CH), 3.87-4.00 (br.m, 2H; POCH₂), 4.00-4.08' (br.m, 1H; CH_{2allyl} (*syn*)), 4.13-4.19 (br.m, 1H; CH_{2allyl} (*syn*)), 4.19-4.30 (br.m, 2H; NCH₂C<u>H</u>), 5.03-5.18 (br.m, 2H; N<u>H</u>CH), 5.18-5.26 (m, 1H; CH_{allyl}), 6.89 and

6.93 (d, ³*J*(H,H) = 7.9 and 7.8 Hz, 4H; CH_{ortho}), 6.99-7.03 (m, 2H; CH_{para}), 7.27-7.31 (m, 4H; CH_{meta}) ppm. ${}^{13}C{}^{1}H{NMR}^{[a]}$ (125.7 MHz, CD₂Cl₂, ambient temperature): δ = 16.05 (s; <u>C</u>H₃), 27.68-27.76 (m; NCH₂<u>C</u>H₂), 28.88 (s; (<u>C</u>H₃)₃C), 31.08 (s; S<u>C</u>H₂CH₂), 31.85 and 31.99 (br.s; <u>C</u>H₂), 32.48 and 32.56 (br.s; SCH₂<u>C</u>H₂), 49.43 and 49.71 (vt, *J*(C,P) = 10.9 and 11.8 Hz; N<u>C</u>H₂CH₂), 50.97 (br.s; NH<u>C</u>H), 54.86 and 55.02 (s; N<u>C</u>H₂CH), 63.07 and 63.22 (s; NCH₂<u>C</u>H), 66.81-67.00 (br.m; POCH₂), 70.95-71.23' (br.m; CH_{2allyl}), 71.09-71.41 (br.m; CH_{2allyl}), 80.12 (br.s; (CH₃)₃<u>C</u>), 115.99 and 116.12 (s; CH_{ortho}), 122.11 and 122.20 (s; CH_{para}), 124.16 (t, ${}^{2}J$ (C,P) = 8.5 Hz; CH_{allyl}), 130.36 (s; CH_{meta}), 143.28-143.45 (br.m; CNP), 156.23 (s; C(O)O) ppm. ${}^{31}P{}^{1}H{}$ NMR (202.4 MHz, CD₂Cl₂, ambient temperature): δ = 117.20 (br.s) ppm. C₄₅H₇₃BF₄N₆O₆P₂PdS₂ (1113.41): calcd. C 48.54, H 6.61, N 7.55; found C 48.78, H 6.69, N 7.71.

^[a] The nonequivalent signals of two *P*-ligands are listed in order of increasing chemical shifts using the conjunction "and".

Figure S14a. ¹H NMR Signal Assignment for [Pd(allyl)(L1d)₂]BF₄.

Figure S14b. ¹³C NMR Signal Assignment for [Pd(allyl)(L1d)₂]BF₄.

 $[Pd(allyl)(L3a)_2]BF_4$: White solid, yield 0.209 g (92 %). ¹H NMR^[a] (499.9 MHz, CD₂Cl₂, ambient temperature): δ = 1.24 and 1.26 (s; 6H; CH₃), 1.27 and 1.28 (s; 6H; CH₃), 1.32-1.39 (br.m, 2H; CH₂), 1.43 (s, 18H; (CH₃)₃C), 1.87-1.98 (m, 2H; NCH₂CH₂), 1.99-2.07 (m, 2H; NCH₂CH₂), 2.01-2.09 (m, 2H; CH₂), 2.31-2.46 (br.m, 2H; NCH₂CH), 2.98-3.07 (br.m, 1H; CH_{2allvl} (anti)), 3.06-3.16' (br.m, 1H; CH_{2allvl} (anti)), 3.28-3.36 (br.m, 2H; NCH₂CH₂), 3.49-3.58 (br.m, 4H; CH₂NHBoc), 3.37-3.44 and 3.42-3.48 (br.m, 2H; NCH₂CH₂), 3.58-3.67 (br.m, 2H; NCH₂CH), 3.71-3.78 (m, 2H; POCH₂), 4.02-4.11 (br.m, 2H; POCH₂), 4.12-4.22 (br.m, 2H; NCH₂C<u>H</u>), 4.41-4.54 (br.m, 1H; CH_{2allvl} (syn)), 4.41-4.54' (br.m, 1H; CH_{2allvl} (syn)), 5.14 (br.s, 2H; CH₂NHBoc), 5.38-5.49 (m, 1H; CH_{allvl}), 6.16 and 6.18 (br.s, 2H; CNH), 6.84 and 6.85 (d, ³J(H,H) = 6.8 and 7.3 Hz, 4H; CH_{ortho}), 6.97 and 6.99 (t, ³J(H,H) = 7.8 and 7.3 Hz, 2H; CH_{para}), 7.28 and 7.30 (t, ³J(H,H) = 7.8 and 7.8 Hz, 4H; CH_{meta}) ppm. ¹³C{¹H} NMR^[a] (125.7 MHz, CD₂Cl₂, ambient temperature): δ = 24.73 (s; CH₃), 24.94 (s; CH₃), 27.99 and 28.10 (br.s; NCH₂CH₂), 28.73 (s; (CH₃)₃C), 31.67 and 31.73 (s; CH₂), 45.32 (br.s; CH₂NHBoc), 48.66-48.88 and 48.88-49.08 (br.m; NCH₂CH₂), 54.14 (s; CNH), 54.50 (br.s; NCH₂CH), 63.00 and 63.22 (s; NCH₂CH), 69.54-69.63 and 69.63-69.72 (br.m; POCH₂), 72.44-72.69 (br.m; CH_{2allvl}), 72.62-72.92' (br.m; CH_{2allvl}), 80.22 (s; (CH₃)₃C), 115.88 (s; CH_{ortho}), 121.66 (s; CH_{para}), 123.80 (br.s; CH_{allvl}), 130.23 (s; CH_{meta}), 143.38 (br.s; CNP), 156.55 (br.s; C(O)O), 169.72 (s; CO) ppm. ³¹P{¹H} NMR (242.9 MHz, CD_2Cl_2 , 19 °C): δ = 113.51 (br.s) ppm. $C_{47}H_{75}BF_4N_8O_8P_2Pd$ (1135.34): calcd. C 49.72, H 6.66, N 9.87; found C 49.98. H 6.76. N 9.61.

^[a] The nonequivalent signals of two *P*-ligands are listed in order of increasing chemical shifts using the conjunction "and".

Figure S15b. ¹³C NMR Signal Assignment for [Pd(allyl)(L3a)₂]BF₄.

[Pd(allyl)(L3b)₂]BF₄: White solid, yield 0.219 g (79 %). ¹H NMR^[a] (499.9 MHz, CD₂Cl₂, ambient temperature): $\delta = 0.95$ -1.01 and 1.02-1.08 (m, 2H; CH₂), 1.40-1.48 (br.m, 2H; NCH₂CH₂), 1.44 (s, 18H; (CH₃)₃C), 1.55-1.63 and 1.62-1.70 (br.m, 2H; NCH₂CH), 1.87-1.99 (br.m, 2H; CH₂), 2.00-2.11 (br.m, 2H; NCH₂CH₂), 2.77-2.87 (br.m, 1H; CH_{2allvl} (anti)), 2.94-3.03 and 3.09-3.16 (br.m, 2H; NCH₂CH₂), 2.95-3.06 and 3.25-3.35 (br.m, 2H; NCH₂CH₂), 3.25-3.36' (br.m, 1H; CH_{2allvl} (anti)), 3.33-3.42 (br.m, 2H; NCH₂CH), 3.59 (br.dd, ²J(H,H) ~ 5.1 Hz, ³J(H,H) ~ 3.9 Hz, 2H; CH₂NHBoc), 3.64 (br.m, 2H; CH₂NHBoc), 3.97-4.05 (m, 2H; NCH₂C<u>H</u>), 4.19-4.24' (br.m, 1H; CH_{2allvl} (syn)), 4.20-4.27 and 4.26-4.34 (br.m, 2H; POCH₂), 4.32-4.41 (br.m, 1H; CH_{2allvl} (syn)), 4.83-4.92 (br.m, 2H; POCH₂), 5.29-5.44 (br.m, 1H; CH_{allvl}), 5.50 (br.s, 2H; CH_2NHBoc), 6.49 and 6.65 (d, ³J(H,H) = 8.1 and 8.1 Hz, 4H; CH_{ortho}), 6.93 and 6.97 (t, ³J(H,H) = 7.3 and 7.5 Hz, 2H; CH_{para}), 7.14-7.23' (m, 8H; CH_{para}), 7.16-7.22 and 7.22-7.28 (m, 4H; CH_{meta}), 7.20 (br.s, 2H; CNH), 7.21-7.32' (m, 8H; CH_{meta}), 7.23-7.35' (m, 8H; CH_{para}) ppm. ¹³C{¹H} NMR^[a] (125.7 MHz, CD₂Cl₂, ambient temperature): δ = 28.33 and 28.38 (br.s; NCH₂CH₂), 28.68 (s; (CH₃)₃C), 31.31 (s; CH₂), 45.94 (br.s; CH₂NHBoc), 47.27-47-56 (br.m; NCH₂CH₂), 53.79 (br.s; NCH₂CH), 63.23 and 63.52 (br.s; NCH₂CH), 65.13 (br.s; CNH), 68.35 and 68.35, (s and br.s; POCH₂), 74.01 (br.d, ²J(C,P_{trans}) ~ 35.3 Hz; CH_{2allvl}), 75.48' (br.d, 2 J(C,P_{trans}) ~ 39.1 Hz; CH_{2allvl}), 80.41 and 80.54 (br.s; (CH₃)₃C), 115.50-115.57 and 115.63-115.71 (br.m; CH_{ortho}), 121.31 and 121.40 (s; CH_{para}), 127.37-127.53' (m; CH_{para}), 127.94-128.10' (m; CH_{meta}), 128.82-128.92' (m; CH_{ortho}), 130.21 and 130.29 (s; CH_{meta}), 123.16 (br.s; CH_{allvl}), 142.50-142.77' (br.m; C_{ipso}), 142.79-142.94 and 143.00-143.12 (br.m; CNP), 155.96 (br.s; C(O)O), 169.75 and 169.87 (s; CO) ppm. ${}^{31}P{}^{1}H{} NMR{}^{[a]}$ (202.4 MHz, CD₂Cl₂, ambient temperature): $\delta = 113.34$ (br.d, ${}^{2}J(P,P) = 82.4$ Hz) and 112.85 $(br.d, {}^{2}J(P,P) = 82.4 Hz) ppm. C_{67}H_{83}BF_{4}N_{8}O_{8}P_{2}Pd$ (1383.62): calcd. C 58.16, H 6.05, N 8.10; found C 58.45, H 6.12, N 7.85.

^[a] The nonequivalent signals of two *P*-ligands are listed in order of increasing chemical shifts using the conjunction "and".

Figure S16b. ¹³C NMR Signal Assignment for [Pd(allyl)(L3b)₂]BF₄.

[Pd(allyl)(L3c)₂]BF₄: White solid, yield 0.191 g (84 %). ¹H NMR^[*a*] (499.9 MHz, CD₂Cl₂, ambient temperature): δ = 0.79 and 0.81 (t, ³*J*(H,H) = 7.3 and 7.3 Hz, 6H; C<u>H</u>₃CH₂), 1.35-1.48 (m, 2H; CH₃C<u>H</u>₂), 1.42 (s, 18H; (CH₃)₃C), 1.51-1.62 (m, 2H; CH₃C<u>H</u>₂), 1.56-1.66 (br.m, 2H; C<u>H</u>₂), 1.84-1.93 (m, 2H; NCH₂C<u>H</u>₂), 2.01-2.08 (m, 2H; NCH₂C<u>H</u>₂), 2.11-2.19 (m, 2H; C<u>H</u>₂), 2.77-2.90' (br.m, 1H; CH_{2allyl} (*anti*)), 2.88-3.00 (br.m, 1H; CH_{2allyl} (*anti*)), 2.90-3.02 (br.m, 2H; NC<u>H</u>₂CH), 3.27-3.34 and 3.31-3.37 (br.m, 2H; NC<u>H</u>₂CH₂), 3.41-3.49 and 3.49-3.57 (br.m, 2H; NC<u>H</u>₂CH₂), 3.62-3.70 (m, 4H; C<u>H</u>₂NHBoc), 3.74-3.81 (br.m, 2H; POCH₂), 3.81-3.89 (br.m, 2H; POCH₂), 3.82-3.92 (br.m, 2H; NC<u>H</u>₂CH), 3.83-3.95 (br.m, 2H; C<u>H</u>NH), 4.10-4.20 (br.m, 1H; CH_{2allyl} (*syn*)), 4.21-4.31 (m, 2H; NCH₂C<u>H</u>), 4.21-4.31' (br.m, 1H; CH_{2allyl} (*syn*)), 5.26-5.34 (m, 1H; CH_{allyl}), 5.39 (br.s, 2H; CH₂N<u>H</u>Boc), 6.41 and 6.43 (br.d, ³*J*(H,H) = 7.3 and 7.3 Hz, 2H; CHN<u>H</u>), 6.83 and 6.87 (d, ³*J*(H,H) = 8.1 and 8.1 Hz, 4H; CH_{ortho}), 6.96 and 6.97 (t, ³*J*(H,H) = 7.3 and 7.3 Hz, 2H; CH_{para}), 7.24 and 7.24 (t, ³*J*(H,H) = 7.7 and 7.7 Hz, 4H; CH_{meta}) ppm. ¹³C{¹H} NMR^[*a*] (125.7 MHz, CD₂Cl₂, ambient temperature): δ = 10.60 and 10.63 (s; <u>CH</u>₃CH₂), 24.92 and 24.96 (s; CH₃C₄), 27.68 and 27.79 (br.s; NCH₂C₄), 28.70 (s;
(<u>CH</u>₃)₃C), 31.92 and 32.02 (s; <u>CH</u>₂), 44.98 (br.s; <u>C</u>H₂NHBoc), 49.22 and 49.50 (br.d, ²*J*(C,P) ~ 22.9 and 21.9 Hz; N<u>C</u>H₂CH₂), 51.53 (s; CHNH), 54.86 and 55.02 (s; N<u>C</u>H₂CH), 63.09 and 63.24 (s; NCH₂<u>C</u>H), 143.25-143.40 (br.m; POCH₂), 71.76 (br.d, ²*J*(C,P_{trans}) ~ 39.1 Hz; CH_{2allyl}), 72.15' (br.d, ²*J*(C,P_{trans}) ~ 40.1 Hz; CH_{2allyl}), 80.17 (br.s; (CH₃)₃<u>C</u>), 115.89 and 115.99 (br.s; CH_{ortho}), 121.78 and 121.87 (s; CH_{para}), 124.38 (t, ²*J*(C,P) = 8.6 Hz; CH_{allyl}), 130.18 and 130.20 (s; CH_{meta}), 143.25-143.40 (br.m; CNP), 156.59 (br.s; C(O)O), 170.36 and 170.39 (s; CO) ppm. ³¹P{¹H} NMR^[a] (202.4 MHz, CD₂Cl₂, ambient temperature): δ = 115.91 (br.d, ²*J*(P,P) = 90.0 Hz) and 116.45 (br.d, ²*J*(P,P) = 90.0 Hz) ppm. C₄₇H₇₅BF₄N₈O₈P₂Pd (1135.34): calcd. C 49.72, H 6.66, N 9.87; found C 50.00, H 6.75, N 10.02.

^[a] The nonequivalent signals of two *P*-ligands are listed in order of increasing chemical shifts using the conjunction "and".

Figure S17a. ¹H NMR Signal Assignment for [Pd(allyl)(L3c)₂]BF₄.

Figure S17b. ¹³C NMR Signal Assignment for [Pd(allyl)(L3c)₂]BF₄.

 $[Pd(allyl)(L3d)_2]BF_4$: White solid, yield 0.243 g (93 %). ¹H NMR (600.1^[a] MHz, CD₂Cl₂, 22.6 °C): $\delta =$ 0.77' (s, 9H; (CH₃)₃C), 0.98" (s, 9H; (CH₃)₃C), 1.14-1.30 (br.m, 1H; CH₂), 1.40 (s, 9H; (CH₃)₃C), 1.88-1.96 (m, 2H; NCH₂CH₂), 1.91-2.00 (m, 1H; CH₂), 2.04-2.10 (m, 1H; NCH₂CH), 3.12-3.19 (br.m, 1H; NCH₂CH₂), 3.20-3.25 (br.m, 1H; NCH₂CH₂), 3.45-3.52 (br.m, 1H; NCH₂CH), 3.60-3.65 (br.m, 1H; POCH₂), 3.72-3.78 (br.m, 1H; POCH₂), 3.80-3.82 (m, 1H; CHNHBoc), 3.81-3.88 (br.m, 1H; CHNH), 3.99-4.06 (m, 1H; NCH₂CH), 5.25 (br.d, ³J(H,H) ~ 9.5, 1H; CHN<u>H</u>Boc), 6.22 (br.d, ³J(H,H) ~ 8.1, 1H; CHN<u>H</u>), 6.81 (d, ³J(H,H) = 7.3 Hz, 2H; CH_{ortho}), 6.99 (t, ³J(H,H) = 7.3 Hz, 1H; CH_{para}), 7.30 (t, ³J(H,H) = 7.7 Hz, 2H; CH_{meta}) (L), 0.76' (s, 9H; (CH₃)₃C), 0.99" (s, 9H; (CH₃)₃C), 1.14-1.30 (br.m, 1H; CH₂), 1.40 (s, 9H; (CH₃)₃C), 1.96-2.06 (m, 2H; NCH₂CH₂), 1.91-2.00 (m, 1H; CH₂), 2.04-2.10, (m, 1H; NCH₂CH), 3.25-3.30 (br.m, 1H; NCH₂CH₂), 3.31-3.38 (br.m, 1H; NCH₂CH₂), 3.45-3.52 (br.m, 1H; NCH₂CH), 3.59-3.63 (br.m, 1H; POCH₂), 3.68-3.72 (br.m, 1H; POCH₂), 3.79-3.80 (m, 1H; CHNHBoc), 3.81-3.88 (br.m, 1H; CHNH), 4.01-4.09 (m, 1H; NCH₂CH), 5.23 (br.d, ³J(H,H) ~ 9.5, 1H; CHN<u>H</u>Boc), 6.16 (br.d, ³J(H,H) ~ 8.8, 1H; CHN<u>H</u>), 6.72 (d, ³J(H,H) = 8.1 Hz, 2H; CH_{ortho}), 6.95 (t, ³J(H,H) = 7.0 Hz, 1H; CH_{para}), 7.26 (t, ³J(H,H) = 7.3 Hz, 2H; CH_{meta}) (L'), 3.08-3.13' (br.m, 1H; CH₂ (anti)), 3.30-3.36 (br.m, 1H; CH₂ (anti)), 4.77-4.84 (br.m, 1H; CH₂ (syn)), 4.81-4.88' (br.m, 1H; CH₂ (*syn*)), 5.46-5.55 (br.m, 1H; CH) (allylic ligand) ppm. ${}^{13}C{}^{1}H$ NMR (150.9^[b] MHz, CD₂Cl₂, 22.6 °C): $\delta =$ 26.87" (s; ($\underline{C}H_3$)₃C), 26.97' (s; ($\underline{C}H_3$)₃C), 28.04 (vt, J = 3.8 Hz; NCH₂CH₂), 28.59 (s; ($\underline{C}H_3$)₃C), 31.38 (br.s; <u>CH</u>₂), 34.35'' (br.s; (CH₃)₃C), 34.55' (s; (CH₃)₃C), 47.92-48.06 (m; NCH₂CH₂), 54.09 (s; NCH₂CH), 57.39 (br.s;

CHNH), 62.95 (s; NCH₂<u>C</u>H), 63.34 (br.s; <u>C</u>HNHBoc), 65.80 (vt, *J* = 6.6 Hz; POCH₂), 80.08 (s; (CH₃)₃<u>C</u>), 115.60 (vt, *J* ~ 4.4 Hz; CH_{ortho}), 121.49 (s; CH_{para}), 130.30 (s; CH_{meta}), 143.09 (vt, *J* ~ 5.3 Hz; CNP), 156.52 (br.s; C(O)O), 171.47 (s; CO) (L), 26.94'' (s; (<u>C</u>H₃)₃C), 27.03' (s; (<u>C</u>H₃)₃C), 28.27 (vt, *J* = 3.8 Hz; NCH₂<u>C</u>H₂), 28.59 (s; (<u>C</u>H₃)₃C), 31.38 (br.s; <u>C</u>H₂), 34.40'' (br.s; (CH₃)₃<u>C</u>), 34.55' (s; (CH₃)₃<u>C</u>), 47.85-47.99 (m; N<u>C</u>H₂CH₂), 54.09 (s; N<u>C</u>H₂CH), 57.47 (br.s; CHNH), 63.25 (s; NCH₂<u>C</u>H), 63.25 (br.s; <u>C</u>HNHBoc), 66.06 (vt, *J* = 6.6 Hz; POCH₂), 80.08 (s; (CH₃)₃<u>C</u>), 115.52 (vt, *J* ~ 4.4 Hz; CH_{ortho}), 121.45 (s; CH_{para}), 130.22 (s; CH_{meta}), 143.00 (vt, *J* ~ 5.3 Hz; CNP), 156.52 (br.s; C(O)O), 171.52 (s; CO) (L'), 73.96' (vt, *J* = 21.0 Hz; CH₂), 74.77 (vt, *J* = 22.1 Hz; CH₂), 123.26 (t, ²*J*(C,P) = 8.6 Hz; CH) (**allylic ligand**) ppm. ³¹P{¹H} NMR (242.4 MHz, CD₂Cl₂, 26 °C): δ = 116.58 (br.s) ppm. C₅₉H₉₉BF₄N₈O₈P₂Pd (1303.66): calcd. C 54.36, H 7.65, N 8.60; found C 54.89, H 7.60, N 8.67.

^[a] The value of some coupling constants was determined in the following conditions: 499.9 MHz, CD_2Cl_2 , ambient temperature. ^[b] The value of some coupling constants was determined in the following conditions: 125.7 MHz, CD_2Cl_2 , ambient temperature.

Figure S18a. Full ¹H NMR Signal Assignment for [Pd(allyl)(L3d)₂]BF₄.

Figure S18b. Full ¹³C NMR Signal Assignment for [Pd(allyl)(L3d)₂]BF₄.

[Pd(allyl)(**L3e**)₂]BF₄: White solid, yield 0.229 g (88 %). ¹H NMR^[*a*] (499.9 MHz, CD₂Cl₂, ambient temperature): δ = 0.72 and 0.73 (t, ³J(H,H) = 7.1 and 7.3 Hz, 6H; CH₃CH₂), 0.78-0.81' (m, 6H; CH₃CH), 0.81-0.84' (m, 6H; CH₃CH₂), 0.86 and 0.86 (d, ³J(H,H) = 6.6 and 6.8 Hz, 6H; CH₃CH), 0.95-1.04 (m, 4H; CH₃CH₂), 1.06-1.09' (m, 4H; CH₃CH₂), 1.27-1.35 (br.m, 4H; CH₃CH₂), 1.37-1.51' (br.m, 4H; CH₃CH₂), 1.41 (s, 18H; (CH₃)₃C), 1.41-1.50 (br.m, 2H; CH₂), 1.54-1.64 (br.m, 2H; CH₃CH), 1.74-1.84' (br.m, 2H; CH₃CH),

1.88-1.95 (m, 2H; NCH₂CH₂), 1.97-2.05 (m, 2H; NCH₂CH₂), 2.02-2.11 (br.m, 2H; CH₂), 2.37-2.56 (br.m, 2H; NCH₂CH), 3.02-3.12 (br.m, 1H; CH_{2allvl} (anti)), 3.06-3.17' (br.m, 1H; CH_{2allvl} (anti)), 3.23-3.31 (br.m, 2H; NCH₂CH₂), 3.34-3.41 and 3.41-3.49 (br.m, 2H; NCH₂CH₂), 3.52-3.61 (br.m, 2H; POCH₂), 3.58-3.68 (br.m, 2H; NCH₂CH), 3.73-3.82 (m, 2H; CHNHBoc), 3.83-3.90 (br.m, 2H; CHNH), 3.84-3.95 (br.m, 2H; POCH₂), 4.07-4.17 (br.m, 2H; NCH₂C<u>H</u>), 4.43-4.53 (br.m, 1H; CH_{2allvl} (syn)), 4.49-4.62' (br.m, 1H; CH_{2allvl} (syn)), 5.08-5.15 and 5.11-5.20 (br.m, 2H; CHNHBoc), 5.39-5.52 (m, 1H; CH_{allvl}), 6.43 and 6.47 (br.s; CHNH), 6,78 and 6.83 (d, ${}^{3}J(H,H) = 8.1$ and 7.8 Hz, 4H; CH_{ortho}), 6.96 and 6.98 (t, ${}^{3}J(H,H) = 7.1$ and 7.1 Hz, 2H; CH_{para}), 7.24 and 7.28 (t, ${}^{3}J(H,H) = 7.9$ and 7.9 Hz, 4H; CH_{meta}) ppm. ${}^{13}C{}^{1}H{}$ NMR^[a] (125.7 MHz, CD₂Cl₂, ambient temperature): $\delta = 11.39$ (s; <u>CH₃CH₂</u>), 11.58' (s; <u>CH₃CH₂</u>), 15.87 (s; <u>CH₃CH</u>), 16.24' (s; <u>CH₃CH</u>), 24.99 (s; CH₃CH₂), 25.17' (s; CH₃CH₂), 27.93 and 28.07 (br.s; NCH₂CH₂), 28.69 (s; (CH₃)₃C), 31.71 (br.s; CH₂), 35.66 and 35.76 (s; CH₃CH), 36.78' (br.s; CH₃CH), 48.64-49.00 (br.m; NCH₂CH₂), 54.00 (br.s; CHNH), 54.52 and 54.60 (br.s; NCH₂CH), 60.34 (br.s; CHNHBoc), 63.17 and 63.39 (br.s; NCH₂CH), 65.47 (br.s; POCH₂), 72.71 (br.vt, J ~ 20.0 Hz; CH_{2allvl}), 73.19' (br.vt, J ~ 21.0 Hz; CH_{2allvl}), 80.27 (s; (CH₃)₃<u>C</u>), 115.71 (s; CH_{ortho}), 121.79 (s; CH_{para}), 124.02 (br.s; CH_{allvl}), 130.31 and 130.38 (s; CH_{meta}), 143.21 (s; CNP), 156.60 (br.s; C(O)O), 172.33 (s; CO) ppm. ${}^{31}P{}^{1}H$ NMR (202.4 MHz, CD₂Cl₂, ambient temperature): δ = 115.07 (br.s) ppm. C₅₉H₉₉BF₄N₈O₈P₂Pd (1303.66): calcd. C 54.36, H 7.65, N 8.60; found C 54.60, H 7.75, N 8.47.

^[a] The nonequivalent signals of two *P*-ligands are listed in order of increasing chemical shifts using the conjunction "and".

Figure S19a. ¹H NMR Signal Assignment for [Pd(allyl)(**L3e**)₂]BF₄.

Figure S19b. ¹³C NMR Signal Assignment for [Pd(allyl)(L3e)₂]BF₄.

[Pd(allyl)(L3f)₂]BF₄: yellowish solid, yield 0.238 g (97 %). ¹H NMR^[a] (499.9 MHz, CD₂Cl₂, ambient temperature): δ = 1.43 (s, 18H; (CH₃)₃C), 1.52-1.65 (m, 2H; CH₂), 1.67-1.83 (br.m, 4H; SCH₂CH₂), 1.82-1.94 (br.m, 2H; NCH₂CH₂), 1.98-2.10 (br.m, 2H; NCH₂CH₂), 2.04 (br.s, 6H; CH₃), 2.08-2.21 (m, 2H; CH₂), 2.37-2.47 (br.m, 2H; SCH₂CH₂), 2.47-2.57 (br.m, 2H; SCH₂CH₂), 2.68-2.84' (br.m, 1H; CH_{2allvl} (anti)), 2.71-2.96 (br.m, 2H; NCH2CH), 2.76-2.94 (br.m, 1H; CH2allyl (anti)), 3.25-3.35 and 3.35-3.41 (br.m, 2H; NCH₂CH₂), 3.40-3.45 and 3.44-3.52 (br.m, 2H; NCH₂CH₂), 3.70.-3.77 (br.m, 2H; POCH₂), 3.69-3.70 (m, 4H; CH₂NHBoc), 3.72-3.81 (br.m, 2H; NCH₂CH), 3.90-3.99 (br.m, 2H; POCH₂), 4.05-4.21 (br.m, 1H; CH_{2allvl} (syn)), 4.10-4.22 (br.m, 2H; NHCH), 4.20-4.30 (m, 2H; NCH₂CH), 4.20-4.36' (br.m, 1H; CH_{2allvl} (syn)), 5.40-5.54 (br.m, 2H; CHNHBoc), 5.17-5.32 (br.m, 1H; CH_{allvl}), 6.80-6.95 (br.m, 2H; NHCH), 6.88-6.92 (br.m, 4H; CH_{ortho}), 6.99 (t, ³J(H,H) = 7.1 Hz, 2H; CH_{para}), 7.29 (t, ³J(H,H) = 7.7 Hz, 4H; CH_{meta}) ppm. ¹³C{¹H} NMR^[a] $(125.7 \text{ MHz}, \text{CD}_2\text{Cl}_2, \text{ ambient temperature}): \delta = 16.05 (s; \text{CH}_3), 27.79 (br.s; \text{NCH}_2\text{CH}_2), 28.77 (s; (\text{CH}_3)_3\text{C}),$ 30.99 (s; SCH₂CH₂), 31.81 (br.s; SCH₂CH₂), 31.87 (br.s; CH₂), 44.99 (br.s; CH₂NHBoc), 49.03-49.89 (br.m; NCH2CH2), 49.56 (s; NHCH), 54.87 (br.s; NCH2CH), 62.88-63.19 (br.m; NCH2CH), 66.47 (s; POCH2), 70.59-71.20 (br.m; CH_{2allvl}), 71.20-71.67' (br.m; CH_{2allvl}), 80.27 (s; (CH₃)₃C), 116.06 (br.s; CH_{ortho}), 122.01 (s; CH_{para}), 124.03 (t, ²J(C,P) = 8.6 Hz; CH_{allvl}), 130.30 (s; CH_{meta}), 143.28-143.49 (m; CNP), 156.64 (br.s; C(O)O), 170.68 (s; CO), ppm. ${}^{31}P{}^{1}H$ NMR (202.4 MHz, CD₂Cl₂, ambient temperature): δ = 116.85 (br.s) ppm. C₄₉H₇₉BF₄N₈O₈P₂PdS₂ (1227.51): calcd. C 47.95, H 6.49, N 9.13; found C 48.27, H 6.60, N 9.20. ^[a] The nonequivalent signals of two *P*-ligands are listed in order of increasing chemical shifts using the conjunction "and".

Figure S20b. ¹³C NMR Signal Assignment for [Pd(allyl)(L3f)₂]BF₄.

[Pd(allyl)(L3g)₂]BF₄: White solid, yield 0.193 g (74 %). ¹H NMR^[a] (499.9 MHz, CD₂Cl₂, ambient temperature): $\delta = 0.72 - 0.75$ (m, 6H; CH₃CH), 0.84 (br.t, ³J(H,H) ~ 6.8 Hz, 6H; CH₃CH₂), 0.86-0.89' (br.m, 6H; CH₃CH₂), 0.89-0.91' (m, 6H; CH₃CH), 1.02-1.13 (br.m, 4H; CH₃CH₂), 1.05-1.17' (m, 4H; CH₃CH₂), 1.31-1.42 (br.m, 2H; CH₂), 1.38-1.47 (br.m, 4H; CH₃CH₂), 1.41 (s, 18H; (CH₃)₃C), 1.47-1.55' (br.m, 4H; CH₃CH₂), 1.54-1.65 (br.m, 2H; CH₃CH), 1.84-1.91' (br.m, 2H; CH₃CH), 1.88-1.95 (m, 2H; NCH₂CH₂), 1.98-2.05 (m, 2H; NCH₂CH₂), 1.99-2.10 (br.m, 2H; CH₂), 2.21-2.40 (br.m, 2H; NCH₂CH), 3.06-3.17 (br.m, 1H; CH_{2allvl} (anti)), 3.16-3.25' (br.m, 1H; CH_{2allvl} (anti)), 3.25-3.32 and 3.30-3.35 (br.m, 2H; NCH₂CH₂), 3.30-3.35 and 3.36-3.45 (br.m, 2H; NCH₂CH₂), 3.49-3.56 and 3.54-3.60 (br.m, 2H; POCH₂), 3.55-3.65 (br.m, 2H; NCH₂CH), 3.80-3.87 (br.m, 2H; CHNHBoc), 3.84-3.88 (m, 2H; POCH₂), 3.90-3.99 (br.m, 2H; CHNH), 4.01-4.12 (br.m, 2H; NCH₂C<u>H</u>), 4.56-4.67 (br.m, 1H; CH_{2allvl} (*syn*)), 4.67-4.78' (br.m, 1H; CH_{2allvl} (*syn*)), 5.15-5.29 (br.m, 2H; CHN<u>H</u>Boc), 5.42-5.54 (m, 1H; CH_{allyl}), 6.35-6.39 (m; CHN<u>H</u>), 6,76 and 6.81 (d, ³J(H,H) = 7.3 and 7.8 Hz, 4H; CH_{ortho}), 6.96 and 6.98 (t, ${}^{3}J(H,H) = 6.8$ and 6.8 Hz, 2H; CH_{para}), 7.24 and 7.28 (t, ${}^{3}J(H,H) = 7.8$ and 8.0 Hz, 4H; CH_{meta}) ppm. ¹³C{¹H} NMR^[*a*] (125.7 MHz, CD₂Cl₂, ambient temperature): δ = 11.42 (s; CH₃CH₂), 11.60' (s; CH₃CH₂), 16.03' and 16.05' (s; CH₃CH), 16.27 and 16.33 (s; CH₃CH), 25.03 (s; CH₃CH₂), 25.24' and 25.30' (s; CH₃CH₂), 28.05 and 28.25 (br.s; NCH₂CH₂), 28.69 (s; (CH₃)₃C), 31.73 (br.s; CH₂), 35.81 and 35.89 (s; CH₃CH), 36.81' (br.s; CH₃CH), 48.38 and 48.57 (br.d, ²J(C,P) ~ 21.9 and 22.9 Hz; NCH₂CH₂), 53.92 (br.s; CHNH), 54.42 (br.s; NCH₂CH), 60.42 (br.s; CHNHBoc), 63.15 and 63.42 (s; NCH₂CH), 65.69-65.82 and 65.82-65.94 (br.m; POCH₂), 73.30 (br.d, ²J(C,P_{trans}) ~ 40.1; CH_{2allvl}), 74.33' (br.d, ²J(C,P_{trans}) ~ 40.1; CH_{2allvl}), 80.28 (s; (CH₃)₃<u>C</u>), 115.79 (s; CH_{ortho}), 121.72 (s; CH_{para}), 123.96 (t, ²J(C,P_{trans}) = 8.1; CH_{allvl}), 130.24 and 130.29 (s; CH_{meta}), 143.21 (br.s; CNP), 156.57 (br.s; C(O)O), 172.23 and 172.31 (s; CO) ppm. ${}^{31}P{}^{1}H{} NMR{}^{[a]}$ (202.4 MHz, CD₂Cl₂, ambient temperature): $\delta = 114.86$ (br.d, ${}^{2}J(P,P) = 82.7$ Hz) and 115.40 $(br.d, {}^{2}J(P,P) = 82.7 Hz) ppm. C_{59}H_{99}BF_{4}N_{8}O_{8}P_{2}Pd$ (1303.66): calcd. C 54.36, H 7.65, N 8.60; found C 54.62, H 7.67, N 8.70

^[a] The nonequivalent signals of two *P*-ligands are listed in order of increasing chemical shifts using the conjunction "and".

Figure S21b. ¹³C NMR Signal Assignment for [Pd(allyl)(L3g)₂]BF₄.

[Pd(allyl)(L4)₂]BF₄: White solid, yield 0.175 g (72 %). ¹H NMR^[a] (499.9 MHz, CD₂Cl₂, ambient temperature): δ = 1.21-1.30 (br.m, 12H; CH₃), 1.33-1.52 (br.m, 2H; CH₂), 1.43 (br.s, 18H; (CH₃)₃C), 1.71-1.80 (br.m, 8H; CH₂), 1.86-2.00 (br.m, 2H; CH₂), 1.99-2.12 (br.m, 2H; CH₂), 2.00-2.11 (br.m, 2H; CH₂), 2.34-2.59 (br.m, 2H; CH₂), 2.85-3.15 (br.m, 2H; CH_{2allvl} (anti)), 3.19-3.42 (br.m, 4H; CH₂), 3.32-3.41 (br.m, 2H; CH₂), 3.41-3.53 (br.m, 1H; CH₂), 3.56-3.74 (br.m, 2H; CH₂), 3.80-4.10 (br.m, 4H; CH₂), 3.89-3.94 (m, 2H; CH), 4.10-4.23 (br.m, 2H; CH), 4.33-4.67 (br.m, 2H; CH_{2allyl} (syn)), 5.26-5.57 (m, 1H; CH_{allyl}), 5.95 (br.s, 2H; NH), 6.85 (t, 3 /(H,H) = 7.3 Hz, 4H; CH_{ortho}), 6.95-7.00 (m, 2H; CH_{para}), 7.27 and 7.29 (t, 3 /(H,H) = 7.6 and 7.6 Hz, 4H; CH_{meta}) ppm. ¹³C{¹H} NMR^[a] (125.7 MHz, CD₂Cl₂, ambient temperature): δ = 24.20 and 25.43 (br.s; (CH₃)₂C), 24,61-25.26 (br.m; CH₂), 27.91 and 28.04 (br.s; CH₂), 28.73 (s; (CH₃)₃C), 31.59 and 31.68 (s; CH₂), 47.70 (s; CH₂), 48.57-49.23 and 48.57-49.23 (br.m; CH₂), 53.79 (br.s; (CH₃)₂C), 54.49 and 54.55 (br.s; CH₂), 60.98 (br.s; CH), 63.02 and 63.23 (s; CH), 69.22-70.10 (br.m; CH₂), 71.91-73.12 (br.m; CH_{2allyl}), 80.47 (s; (CH₃)₃<u>C</u>), 115.87 and 115.88 (s; CH_{ortho}), 121.63 and 121.66 (s; CH_{para}), 123.70 (t, ²J(C,P) = 8.1 Hz; CH_{allyl}), 130.13 and 130.17 (s; CH_{meta}), 143.30 (br.s; CNP), 156.44 (br.s; C(O)O), 172.02 (br.s; CO) ppm. ${}^{31}P{}^{1}H$ NMR (202.4 MHz, CD₂Cl₂, ambient temperature): δ = 102.61-103.37 (br.m) (minor signal), 114.69-115.46 (br.m) (major signal) ppm. C₅₃H₈₃BF₄N₈O₈P₂Pd (1215.47): calcd. C 52.37, H 6.88, N 9.22; found C 52.65, H 7.01, N 9.02.

^[a] The nonequivalent signals of two *P*-ligands are listed in order of increasing chemical shifts using the conjunction "and".

General Procedure for the Preparation of Cationic Palladium Chelate Complexes of the General Formula [Pd(allyl)(L)]BF₄: A solution of the relevant ligand L1d, L3f (0.2 mmol) in CH₂Cl₂ (2 mL) was added dropwise over 30 min to a stirred solution of [Pd(allyl)Cl]₂ (0.037 g, 0.1 mmol) in CH₂Cl₂ (1 mL) at 20 °C. The reaction mixture was stirred for a further 1 h at 20 °C. A solution of AgBF₄ (0.039 g, 0.2 mmol) in THF (2 mL) was added to the resulting solution, and the reaction mixture was stirred for 1.5 h at 20 °C. The precipitate of AgCl formed was separated by centrifugation. Solution was filtered through SiO₂, solvent was removed in vacuum (40 Torr) and the product was dried in air and in vacuum (1 Torr).

[Pd(allyl)(L1d)]BF₄: yellowish solid, yield 0.125 g (93 %). ¹H NMR^[a] (499.9 MHz, CD₂Cl₂, ambient temperature): δ = 1.35-1.41 (m, 9H), 1.50-1.63 (br.m, 1H), 1.65-1.80 (br.m, 2H), 1.84-1.96 (br.m, 1H), 1.96-2.21 (m, 2H), 2.31 and 2.43 (br.s, 3H; CH₃S), 2.62-3.93 (br.m, 3H), 3.19-3.40 (br.m, 2H), 3.41-3.65 (br.m, 2H), 3.71-4.02 (br.m, 4H), 4.15-4.38 (br.m, 2H), 4.55-4.69 (br.m, 1H), 5.26-5.39 (br.m, 1H), 5.62-5.79 (br.m, 1H), 6.87-7.06 (m, 3H), 7.26.-7.31 (m, 2H) ppm. ¹³C{¹H} NMR^[a] (125.7 MHz, CD₂Cl₂, ambient temperature): δ = 20.65 and 21.35 (br.s; CH₃S), 27.69 (br.s), 27.89 and 27.97 (br.s), 28.91 and 28.99 (s), 31.62 (br.s), 31.83-32.04 (br.m), 32.37 (br.s), 49.13-49.47 (br.m), 50.89-51.30 (br.m), 54.88 and 55.02 (br.s), 55.64 (br.s), 63.06 (br.s), 66.68-67.03 (br.m), 69.37-69.77 and 71.84-72.35 (br.m; CH_{2allyl} (*cis*

position to P atom)), 80.08 (s), 81.25-82-10 (br.m; CH_{2allyl} (*trans* to P atom)), 116.19 and 116.36 (br.s), 121.94-122.00 and 122.33 (br.m and br.s), 124.03 and 124.23 (br.s; CH_{allyl}), 130.47 (s), 143.39-143.60 (br.m), 156.33 and 156.47 (br.s), ppm. ³¹P{¹H} NMR^[a] (202.4 MHz, CD_2Cl_2 , ambient temperature): δ = 116.16 and 117.65 (br.s) ppm. $C_{24}H_{39}BF_4N_3O_3PPdS$ (673.85): calcd. C 42.78, H 5.83, N 6.24; found C 42.89, H 5.91, N 6.36.

^[a] The separate signals of *exo-* and *endo-* forms are listed in order of increasing chemical shifts using the conjunction "and".

[Pd(allyl)(L3f)]BF₄: yellowish solid, yield 0.139 g (95 %). ¹H NMR^[a] (499.9 MHz, CD₂Cl₂, ambient temperature): δ = 1.42 and 1.43 (br.s, 9H), 1.66-1.77 (br.m, 1H), 1.87-2.28 (br.m, 5H), 2.30-2.55 (br.m, 3H; CH₃S), 2.59-3.65 (br.m, 8H), 3.72-4.46 (br.m, 7H), 4.58-4.79 (br.m, 1H), 5.38-5.88 (br.m, 2H), 6.69-7.42 (br.m, 6H) ppm. ¹³C{¹H} NMR^[a] (125.7 MHz, CD₂Cl₂, ambient temperature): δ = 21.14 and 22.06 (br.s; CH₃S), 27.63 (s), 28.91 (s), 31.32 (s), 32.37 (s), 36.07-37.16 (br.m), 44.92 (br.s), 49.32-49.59 (m), 55.54 (br.s), 63.07 (s), 66.32-66.95 (br.m), 71.51-72.51 (br.m; CH_{2allyl} (*cis* position to P atom)), 80.15 (s), 81.35-82.16 (br.m; CH_{2allyl} (*trans* to P atom)), 116.19-116.37 (m), 122.46 (s), 124.31 (br.s; CH_{allyl}), 130.50 (s), 143.26-143.56 (br.m), 156.74 (s), 170.91-171.21 (m) (major signals); 24.26 (s), 26.32 (s), 27.09 (br.s), 27.91-28.01 (m), 28.51 (s), 30.38 (s), 31.91-32.07 (m), 47.12 (s), 51.83 (br.s), 54.85-54.97 (m), 58.81 (s), 61.34 (s), 61.69 (s), 62.39 (br.s), 63.25 (s) 68.46 (s), 114.16 (br.s), 121.00 (s), 121.93 (br,s), 130.50 (s), 126.19 (br.s), 130.06 (s), 130.16 (s) (minor signals) ppm. ³¹P{¹H} NMR^[a] (202.4 MHz, CD₂Cl₂, ambient temperature): δ = 116.07 and 116.72 (s), 117.38 and 117.80 (br.s) ppm. C₂₆H₄₂BF₄N₄O₄PPdS (730.90): calcd. C 42.73, H 5.79, N 7.67; found C 42.45, H 5.85, N 7.81.

^[a] The separate signals of *exo-* and *endo-* forms are listed in order of increasing chemical shifts using the conjunction "and".

Palladium-Catalyzed Asymmetric Allylic Alkylation of (*E*)-1,3-Diphenylallyl Ethyl Carbonate with Dimethyl Malonate: A solution of [Pd(allyl)Cl]₂ (0.0019 g, 0.005 mmol) and the appropriate ligand (0.01 mmol or 0.02 mmol) in CH₂Cl₂ (1.5 mL) was stirred for 40 min or the appropriate complex (0.01 mmol) was dissolved in CH₂Cl₂ (1.5 mL). (*E*)-1,3-diphenylallyl ethyl carbonate (**7**) (0.056 mL, 0.25 mmol) was added and the solution stirred for 15 min. Dimethyl malonate (0.05 mL, 0.44 mmol), BSA (0.11 mL, 0.44 mmol) and potassium acetate (0.002 g) were added. The reaction mixture was stirred for 48 h, diluted with CH₂Cl₂ (2 mL) and filtered through a thin layer of SiO₂. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum (10 Torr, 12 h) affording a residue containing (*E*)-dimethyl 2-(1,3diphenylallyl)malonate (**8a**).^[1] In order to evaluate *ee* and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Amination of (*E*)-1,3-Diphenylallyl Ethyl Carbonate with Pyrrolidine: A solution of [Pd(allyl)Cl]₂ (0.0019 g, 0.005 mmol) and the appropriate ligand (0.01 mmol or 0.02 mmol) in CH₂Cl₂ (1.5 mL) was stirred for 40 min or the appropriate complex (0.01 mmol) was dissolved in CH₂Cl₂ (1.5 mL). (*E*)-1,3-diphenylallyl ethyl carbonate (**7**) (0.056 mL, 0.25 mmol) was added and the solution stirred for 15 min, then freshly distilled pyrrolidine (0.06 mL, 0.75 mmol) was added. The reaction mixture was stirred for 48 h, diluted with CH₂Cl₂ (2 mL) and filtered through a thin layer of SiO₂. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum (10 Torr, 12 h) affording a residue containing (*E*)-1-(1,3-diphenylallyl)pyrrolidine (**8b**).^[2] In order to evaluate *ee* and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Alkylation of Cinnamyl Acetate with Ethyl 2-Oxocyclohexane-1-Carboxylate or Ethyl 2-Oxocyclopentane-1-Carboxylate: A solution of [Pd(allyl)Cl]₂ (0.0019 g, 0.005 mmol) and the appropriate ligand (0.01 mmol or 0.02 mmol) in toluene (1.5 mL) was stirred for 40 min or the appropriate complex (0.01 mmol) was dissolved in toluene (1.5 mL). Cinnamyl acetate (9) (0.04 mL, 0.25 mmol) was added and the solution stirred for 15 min. β-Keto ether 10 or 12 (0.375 mmol), BSA (0.25 mL, 1 mmol) and Zn(OAc)₂ (0.005 g) were added. The reaction mixture was stirred for 48 h, diluted with toluene (2 mL) and filtered through a thin layer of SiO₂. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum (10 Torr, 12 h) affording a residue 1-cinnamyl-2-oxocyclohexane-1-carboxylate containing ethyl (11) or ethyl 1-cinnamyl-2oxocyclopentane-1-carboxylate (13).^[3] In order to evaluate *ee* and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

^{1.} a) S. Breeden, M. Wills, *J. Org. Chem.*, **1999**, *64*, 9735–9738; b) L.-Y. Mei, Z.-L. Yuan, M. Shi, *Organometallics*, **2011**, *30*, 6466.

a) D. Smyth, H. Tye, C. Eldred, N. W. Alcock, M. Wills, *J. Chem. Soc., Perkin Trans.* 1, 2001, 2840; b) J. Chen,
F. Lang, D. Li, L. Cun, J. Zhu, J. Deng, J. Liao, *Tetrahedron: Asymmetry*, 2009, 20, 1953.

a) T. Nemoto, T. Matsumoto, T. Masuda, T. Hitomi, K. Hatano, Y. Hamada, J. Am. Chem. Soc., 2004, 126, 3690; b) T. Nemoto, T. Masuda, T. Matsumoto, Y. Hamada, J. Org. Chem., 2005, 70, 7172; c) Y. Kita, R. D. Kavthe, H. Oda, K. Mashima, Angew. Chem. Int. Ed., 2016, 55, 1098.

Figure S22a. 3a, ¹H (600.1 MHz, CDCl₃, 19.7 °C).

Figure S22c. 3a, ¹³C{¹H} APT (125.7 MHz, CDCl₃, ambient temperature).

Figure S23a. **3b**, ¹H (499.9 MHz, CDCl₃, ambient temperature).

Figure S23b. 3b, $^{13}C{^1H}$ (125.7 MHz, CDCl₃, ambient temperature).

Figure S24a. 3c, ¹H (499.9 MHz, CDCl₃, ambient temperature).

Figure S24b. 3c, ${}^{13}C{}^{1}H$ (125.7 MHz, CDCl₃, ambient temperature).

Figure S24c. **3c**, ¹³C{¹H} APT (125.7 MHz, CDCl₃, ambient temperature).

6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4

Figure S25a. **3e**, ¹H (400.1 MHz, CDCl₃, 27.0 °C).

Figure S25b. 3e, ${}^{13}C{}^{1}H$ (125.7 MHz, CDCl₃, ambient temperature).

Figure S25c. 3e, ¹³C{¹H} APT (125.7 MHz, CDCl₃, ambient temperature).

7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2

Figure S26a. **3f**, ¹H (499.9 MHz, CDCl₃, ambient temperature).

Figure S26c. **3f**, ¹³C{¹H} APT (125.7 MHz, CDCl₃, ambient temperature).

S57

Figure S27b. 4, $^{13}C{^1H}$ (125.7 MHz, CDCl₃, ambient temperature).

Figure S27c. 4, ¹³C{¹H} APT (125.7 MHz, CDCl₃, ambient temperature).

Figure S28a. L1a, ³¹P{¹H} (202.4 MHz, CDCl₃, ambient temperature).

Figure S28b. **L1a**, ¹H (400.1 MHz, CDCl₃, 26 °C).

Figure S28c. L1a, ¹³C{¹H} (150.9 MHz, CDCl₃, 27 °C).

Figure S28d. L1a, ¹³C{¹H} DEPT (150.9 MHz, CDCl₃, 27 °C).

Figure S28f. L1a, ¹H-¹³C HSQC.

3.0

4.0

3.5

7.4

2.5

7.3 7.2 7.1 7.0

2.0

-125 -65 -130 -70

6.9 6.8

1.5

- 75

1.0

Figure S28g. L1a, ¹H-¹H NOESY.

Figure S29a. **L1b**, ³¹P{¹H} (162.0 MHz, CDCl₃, 27 °C).

Figure S29b. L1b, ¹H (499.9 MHz, CDCl₃, ambient temperature).

Figure S29c. L1b, $^{13}C{^{1}H}$ DEPT (125.7 MHz, CDCl₃, ambient temperature).

Figure S29d. L1b, ¹H-¹H COSY.

S64

Figure S29f. L1b, ¹H-¹³C HMBC (fragment of the spectrum).

Figure S29g. L1b, ¹H-¹³C HMBC (fragment of the spectrum).

Figure S30a. **L1c**, ³¹P{¹H} (162.0 MHz, CDCl₃, 27 °C).

Figure S30b. **L1c**, ¹H (600.1 MHz, CDCl₃, 16 °C).

Figure S30c. L1c, ¹³C{¹H} (150.9 MHz, CDCl₃, 15 °C).

Figure S30e. L1c, ¹H-¹H COSY.

Figure S30g. L1c, ¹H-¹³C HMBC

Figure S31a. **L1d**, ³¹P{¹H} (202.4 MHz, CDCl₃, ambient temperature).

Figure S31b. L1d, ¹H (499.9 MHz, CDCl₃, ambient temperature).

Figure S31c. L1d, ${}^{13}C{}^{1}H{}$ (125.7 MHz, CDCl₃, ambient temperature).

Figure S31d. L1d, ¹³C{¹H} APT (125.7 MHz, CDCl₃, ambient temperature).

Figure S31e. L1d, ¹H-¹H COSY.

S72

Figure S32a. L2, ³¹P{¹H}, (242.9 MHz, CD₃C₆D₅).

Figure S32b. L2, ¹H (600.1 MHz, CD₃C₆D₅, -20 °C).

Figure S32c. L2, ${}^{13}C{}^{1}H{}$ (150.9 MHz, CD₃C₆D₅, -20 °C).

Figure S32d. **L2**, ¹³C{¹H} APT (150.9 MHz, CD₃C₆D₅, -20 °C).

Figure S32f. L2, ¹H-¹³C HSQC.

Figure S32h. L2, ¹H-¹H NOESY.

S77

Figure S33b. **L3a**, ¹H (499.9 MHz, CDCl₃, ambient temperature).

Figure S33d. L3a, ¹³C{¹H} DEPT (150.9 MHz, CDCl₃, 24 °C).

Figure S33f. L3a, ¹H-¹³C HSQC.

Figure S34a. L3b, ${}^{31}P{}^{1}H$ (202.4 MHz, CDCl₃, ambient temperature).

Figure S34b. **L3b**, ¹H (600.1 MHz, CDCl₃, 22 °C).

S81

Figure S34d. L3b, ¹³C{¹H} DEPT (150.9 MHz, CDCl₃, 22 °C).

S82

Figure S34f. L3b, ¹H-¹³C HSQC.

S83

Figure S35a. L3c, ${}^{31}P{}^{1}H$ (202.4 MHz, CDCl₃, ambient temperature).

Figure S35b. L3c, ¹H (499.9 MHz, CDCl₃, ambient temperature).

Figure S35c. L3c, ¹³C{¹H} (125.7 MHz, CDCl₃, ambient temperature).

S85

Figure S36a. **L3e**, ³¹P{¹H} (162.0 MHz, CDCl₃, 26 °C).

Figure S36b. L3e, ¹H (499.9 MHz, CDCl₃, ambient temperature).

Figure S36c. L3e, ¹³C{¹H} (125.7 MHz, CDCl₃, ambient temperature).

Figure S36d. L3e, ¹³C{¹H} APT (125.7 MHz, CDCl₃, ambient temperature).

S89

Figure S37a. L3f, ${}^{31}P{}^{1}H$ (202.4 MHz, CDCl₃, ambient temperature).

S90

Figure S37c. L3f, ¹³C{¹H} (125.7 MHz, CDCl₃, ambient temperature).

S91

Figure S37g. L3f, ¹H-¹³C HMBC.

Figure S38a. L3g, ${}^{31}P{}^{1}H$ (202.4 MHz, CDCl₃, ambient temperature).

Figure S38b. **L3g**, ¹H (499.9 MHz, CDCl₃, ambient temperature).

Figure S38d. L3g, ¹³C{¹H} APT (125.7 MHz, CDCl₃, ambient temperature).

S95

Figure S39a. L4, ³¹P{¹H} (242.9 MHz, CDCl₃).

Figure S39c. L4, ¹³C{¹H} (150.9 MHz, CDCl₃, -20 °C).

S98

S99

Figure S39g. L4, ¹H-¹³C HMBC (fragment of the spectrum).

Figure S39h. **L4**, ¹H-¹³C HMBC (fragment of the spectrum).

Figure S39i. L4, ¹H-¹H NOESY.

Figure S40b. **L5**, ¹H (600.1 MHz, CDCl₃, 25 °C).

Figure S40d. L5, ¹³C{¹H} DEPT (150.9 MHz, CDCl₃, 25 °C).

S103

Figure S40g. **L5**, ¹H-¹³C HMBC.

Figure S41a. $[Pd(allyl)(L1d)_2]BF_4$, ${}^{31}P{}^{1}H{}(202.4 \text{ MHz}, CD_2Cl_2, \text{ ambient temperature})$.

Figure S41b. [Pd(allyl)(L1d)₂]BF₄, ¹H (499.9 MHz, CD₂Cl₂, ambient temperature).

Figure S41c. $[Pd(allyl)(L1d)_2]BF_4$, ${}^{13}C{}^{1}H{}(125.7 \text{ MHz}, CD_2Cl_2, ambient temperature})$.

Figure S41e. $[Pd(allyl)(L1d)_2]BF_4$, ¹H-¹³C HSQC.

S107

Figure S42b. [Pd(allyl)(**L3a**)₂]BF₄, ¹H (499.9 MHz, CD₂Cl₂, ambient temperature).

Figure S42d. [Pd(allyl)(L3a)₂]BF₄, ${}^{13}C{}^{1}H$ APT (125.7 MHz, CD₂Cl₂, ambient temperature).

Figure S42f. $[Pd(allyl)(L3a)_2]BF_4$, ¹H-¹³C HSQC.

Figure S43a. $[Pd(allyl)(L3b)_2]BF_4$, ${}^{31}P{}^{1}H{}(202.4 \text{ MHz}, CD_2Cl_2, \text{ ambient temperature})$.

Figure S43b. [Pd(allyl)(L3b)₂]BF₄, ¹H (499.9 MHz, CD₂Cl₂, ambient temperature).

Figure S43c. $[Pd(allyl)(L3b)_2]BF_4$, ${}^{13}C{}^{1}H{}(125.7 \text{ MHz}, CD_2Cl_2, ambient temperature})$.

Figure S43g. [Pd(allyl)(**L3b**)₂]BF₄, ¹H-¹³C HMBC.

Figure S44a. [Pd(allyl)(L3c)₂]BF₄, ${}^{31}P{}^{1}H$ (202.4 MHz, CD₂Cl₂, ambient temperature).

Figure S44b. [Pd(allyl)(**L3c**)₂]BF₄, ¹H (499.9 MHz, CD₂Cl₂, ambient temperature).

S115

Figure S44d. [Pd(allyl)(L3c)₂]BF₄, ${}^{13}C{}^{1}H$ APT (125.7 MHz, CD₂Cl₂, ambient temperature).

S116

NMR SPECTRA OF NEW COMPOUNDS

Figure S45a. $[Pd(allyl)(L3d)_2]BF_4$, ${}^{31}P{}^{1}H{}(202.4 \text{ MHz}, CD_2Cl_2)$.

Figure S45c. [Pd(allyl)(**L3d**)₂]BF₄, ¹H (600.13 MHz, CD₂Cl₂, -50 °C).

NMR SPECTRA OF NEW COMPOUNDS

Figure S45e. $[Pd(allyl)(L3d)_2]BF_4$, ${}^{13}C{}^{1}H} APT (150.9 MHz, CD_2Cl_2, 20 °C).$

Figure S45g. $[Pd(allyl)(L3d)_2]BF_4$, ¹H-¹³C HSQC.

Figure S45h. [Pd(allyl)(**L3d**)₂]BF₄, ¹H-¹³C HMBC (fragment of the spectrum).

Figure S45i. [Pd(allyl)(**L3d**)₂]BF₄, ¹H-¹³C HMBC (fragment of the spectrum).

S122

Figure S46a. [Pd(allyl)(L3e)₂]BF₄, ${}^{31}P{}^{1}H$ (202.4 MHz, CD₂Cl₂, ambient temperature).

Figure S46b. [Pd(allyl)(L3e)₂]BF₄, ¹H (499.9 MHz, CD₂Cl₂, ambient temperature).

Figure S46c. $[Pd(allyl)(L3e)_2]BF_4$, ¹³C{¹H} (125.7 MHz, CD₂Cl₂, ambient temperature).

Figure S46d. [Pd(allyl)(L3e)₂]BF₄, ${}^{13}C{}^{1}H$ APT (125.7 MHz, CD₂Cl₂, ambient temperature).

Figure S46e. [Pd(allyl)(L3e)₂]BF₄, ¹H-¹H COSY.

Figure S56g. [Pd(allyl)(**L3e**)₂]BF₄, ¹H-¹³C HMBC.

Figure S47a. $[Pd(allyl)(L3f)_2]BF_4$, ${}^{31}P{}^{1}H{}(202.4 \text{ MHz}, CD_2Cl_2, \text{ ambient temperature}).$

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2

Figure S47b. [Pd(allyl)(L3f)₂]BF₄, ¹H (499.9 MHz, CD₂Cl₂, ambient temperature).

Figure S47d. $[Pd(allyl)(L3f)_2]BF_4$, ${}^{13}C{}^{1}H$ APT (125.7 MHz, CD_2Cl_2 , ambient temperature).

Figure S47f. [Pd(allyl)(L3f)₂]BF₄, ¹H-¹³C HSQC.

Figure S48a. [Pd(allyl)(L3g)₂]BF₄, ${}^{31}P{}^{1}H$ (202.4 MHz, CD₂Cl₂, ambient temperature).

Figure S48b. [Pd(allyl)(L3g)₂]BF₄, ¹H (499.9 MHz, CD₂Cl₂, ambient temperature).

NMR SPECTRA OF NEW COMPOUNDS

Figure S48d. [Pd(allyl)(L3g)₂]BF₄, ${}^{13}C{}^{1}H$ APT (125.7 MHz, CD₂Cl₂, ambient temperature).

Figure S49a. $[Pd(allyl)(L4)_2]BF_4$, ${}^{31}P{}^{1}H{}(202.4 \text{ MHz}, CD_2Cl_2, ambient temperature})$.

Figure S49c. $[Pd(allyl)(L4)_2]BF_4$, ${}^{13}C{}^{1}H$ (125.7 MHz, CD_2Cl_2 , ambient temperature).

Figure S49d. $[Pd(allyl)(L4)_2]BF_4$, ${}^{13}C{}^{1}H$ APT (125.7 MHz, CD_2Cl_2 , ambient temperature).

Figure S49e. $[Pd(allyl)(L4)_2]BF_4$, $^1H^{-1}H COSY$.

Figure S50a. [Pd(allyl)(L1d)]BF₄, ${}^{31}P{}^{1}H$ (202.4 MHz, CD₂Cl₂, ambient temperature).

Figure S50b. [Pd(allyl)(**L1d**)]BF₄, ³¹P{¹H} (242.9 MHz, CD₂Cl₂, -40 °C).

Figure S50c. [Pd(allyl)(**L1d**)]BF₄, ¹H (499.9 MHz, CD₂Cl₂, ambient temperature).

Figure S51a. [Pd(allyl)(L3f)]BF₄, ${}^{31}P{}^{1}H$ (202.4 MHz, CD₂Cl₂, ambient temperature).

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2

Figure S51c. [Pd(allyl)(**L3f**)]BF₄, ¹H (499.9 MHz, CD₂Cl₂, ambient temperature).

Figure S52. The molecular structure (left) and unit cell (right) of 4.

Figure S53. The N---H...S hydrogen-bonded (blue lines) chain of the molecules in the crystal structure of

L1d

Figure S54. The structure of the supramolecular assembly consisting of two molecules of **L3d** with atomic numbering scheme.

X-RAY STRUCTURE DETERMINATIONS

Figure S55. The unit cell of [Pd(allyl)(L3d)₂]BF₄.
Table S1. Crystal data and structure refinement for 4.

Empirical formula	C14 H26 N2 O4	
Formula weight	286.37	
Temperature	293(2) K	
Wavelength	1.54186 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 8.4766(3) Å	α = 90°.
	b = 11.7814(4) Å	β = 90°.
	c = 16.6402(7) Å	γ = 90°.
Volume	1661.79(11) Å ³	
Z	4	
Density (calculated)	1.145 Mg/m ³	
Absorption coefficient	0.683 mm ⁻¹	
F(000)	624	
Crystal size	.17 x .14 x .12 mm ³	
Theta range for data collection	4.599 to 66.727°.	
Index ranges	-9<=h<=10, -13<=k<=	=9, -18<=l<=19
Reflections collected	10760	
Independent reflections	2902 [R(int) = 0.1237]	
Completeness to theta = 66.727°	99.5 %	
Refinement method	Full-matrix least-squ	ares on F ²
Data / restraints / parameters	2902 / 4 / 195	
Goodness-of-fit on F ²	0.819	
Final R indices [I>2sigma(I)]	R1 = 0.0609, wR2 = 0	0.1269
R indices (all data)	R1 = 0.1435, wR2 = 0).1479
Absolute structure parameter	-0.5(5)	
Extinction coefficient	0.0083(9)	
Largest diff. peak and hole	0.247 and -0.318 e.Å	-3

 Table S2.
 Bond lengths [Å] and angles [°] for 4.

O(1)-C(6)	1.336(6)	C(11)-H(11B)	0.9600
O(1)-C(7)	1.459(6)	C(11)-H(11C)	0.9600
O(2)-C(6)	1.233(6)	C(13)-C(121)	1.540(8)
O(3)-C(8)	1.223(6)	C(13)-C(12)	1.540(8)
N(1)-C(6)	1.317(6)	C(13)-H(13A)	0.9600
N(1)-C(5)	1.459(6)	C(13)-H(13B)	0.9600
N(1)-C(2)	1.477(6)	C(13)-H(13C)	0.9600
N(2)-C(8)	1.344(6)	C(14)-C(121)	1.515(10)
N(2)-C(121)	1.471(8)	C(14)-C(12)	1.515(10)
N(2)-C(12)	1.471(8)	C(14)-H(14A)	0.9600
N(2)-H(2)	0.8600	C(14)-H(14B)	0.9600
C(2)-C(8)	1.517(8)	C(14)-H(14C)	0.9600
C(2)-C(3)	1.517(8)	C(12)-C(15)	1.511(10)
C(2)-H(2A)	0.9800	C(15)-O(4)	1.358(16)
C(3)-C(4)	1.515(8)	C(15)-H(15A)	0.9700
C(3)-H(3A)	0.9700	C(15)-H(15B)	0.9700
C(3)-H(3B)	0.9700	O(4)-H(4)	0.8200
C(4)-C(5)	1.461(8)	C(121)-C(151)	1.52(3)
C(4)-H(4A)	0.9700	C(151)-O(41)	1.37(3)
C(4)-H(4B)	0.9700	C(151)-H(15C)	0.9700
C(5)-H(5A)	0.9700	C(151)-H(15D)	0.9700
C(5)-H(5B)	0.9700	O(41)-H(41)	0.8200
C(7)-C(9)	1.501(9)	C(6)-O(1)-C(7)	122.1(4)
C(7)-C(10)	1.509(8)	C(6)-N(1)-C(5)	122.1(4)
C(7)-C(11)	1.511(10)	C(6)-N(1)-C(2)	125.5(4)
C(9)-H(9A)	0.9600	C(5)-N(1)-C(2)	112.4(4)
С(9)-Н(9В)	0.9600	C(8)-N(2)-C(121)	128.7(5)
C(9)-H(9C)	0.9600	C(8)-N(2)-C(12)	128.7(5)
C(10)-H(10A)	0.9600	C(8)-N(2)-H(2)	115.7
C(10)-H(10B)	0.9600	C(12)-N(2)-H(2)	115.7
C(10)-H(10C)	0.9600	N(1)-C(2)-C(8)	111.6(4)
C(11)-H(11A)	0.9600	N(1)-C(2)-C(3)	101.9(4)

C(8)-C(2)-C(3)	111.7(5)	N(2)-C(8)-C(2)	113.3(5)
N(1)-C(2)-H(2A)	110.4	C(7)-C(9)-H(9A)	109.5
C(8)-C(2)-H(2A)	110.4	C(7)-C(9)-H(9B)	109.5
C(3)-C(2)-H(2A)	110.4	H(9A)-C(9)-H(9B)	109.5
C(4)-C(3)-C(2)	105.6(4)	C(7)-C(9)-H(9C)	109.5
C(4)-C(3)-H(3A)	110.6	H(9A)-C(9)-H(9C)	109.5
С(2)-С(3)-Н(ЗА)	110.6	H(9B)-C(9)-H(9C)	109.5
С(4)-С(3)-Н(ЗВ)	110.6	C(7)-C(10)-H(10A)	109.5
С(2)-С(3)-Н(ЗВ)	110.6	C(7)-C(10)-H(10B)	109.5
H(3A)-C(3)-H(3B)	108.7	H(10A)-C(10)-H(10B)	109.5
C(5)-C(4)-C(3)	105.3(5)	C(7)-C(10)-H(10C)	109.5
C(5)-C(4)-H(4A)	110.7	H(10A)-C(10)-H(10C)	109.5
C(3)-C(4)-H(4A)	110.7	H(10B)-C(10)-H(10C)	109.5
C(5)-C(4)-H(4B)	110.7	C(7)-C(11)-H(11A)	109.5
C(3)-C(4)-H(4B)	110.7	C(7)-C(11)-H(11B)	109.5
H(4A)-C(4)-H(4B)	108.8	H(11A)-C(11)-H(11B)	109.5
N(1)-C(5)-C(4)	105.3(4)	C(7)-C(11)-H(11C)	109.5
N(1)-C(5)-H(5A)	110.7	H(11A)-C(11)-H(11C)	109.5
C(4)-C(5)-H(5A)	110.7	H(11B)-C(11)-H(11C)	109.5
N(1)-C(5)-H(5B)	110.7	C(12)-C(13)-H(13A)	109.5
C(4)-C(5)-H(5B)	110.7	C(12)-C(13)-H(13B)	109.5
H(5A)-C(5)-H(5B)	108.8	H(13A)-C(13)-H(13B)	109.5
O(2)-C(6)-N(1)	123.7(5)	C(12)-C(13)-H(13C)	109.5
O(2)-C(6)-O(1)	123.7(5)	H(13A)-C(13)-H(13C)	109.5
N(1)-C(6)-O(1)	112.6(5)	H(13B)-C(13)-H(13C)	109.5
O(1)-C(7)-C(9)	102.8(5)	C(12)-C(14)-H(14A)	109.5
O(1)-C(7)-C(10)	110.8(5)	C(12)-C(14)-H(14B)	109.5
C(9)-C(7)-C(10)	110.4(6)	H(14A)-C(14)-H(14B)	109.5
O(1)-C(7)-C(11)	110.0(5)	C(12)-C(14)-H(14C)	109.5
C(9)-C(7)-C(11)	112.4(7)	H(14A)-C(14)-H(14C)	109.5
C(10)-C(7)-C(11)	110.2(6)	H(14B)-C(14)-H(14C)	109.5
O(3)-C(8)-N(2)	124.5(5)	N(2)-C(12)-C(15)	108.8(7)
O(3)-C(8)-C(2)	121.9(5)	N(2)-C(12)-C(14)	111.8(5)

C(15)-C(12)-C(14)	111.7(8)
N(2)-C(12)-C(13)	105.7(5)
C(15)-C(12)-C(13)	108.7(6)
C(14)-C(12)-C(13)	109.8(6)
O(4)-C(15)-C(12)	117.6(9)
O(4)-C(15)-H(15A)	107.9
C(12)-C(15)-H(15A)	107.9
O(4)-C(15)-H(15B)	107.9
C(12)-C(15)-H(15B)	107.9
H(15A)-C(15)-H(15B)	107.2
C(15)-O(4)-H(4)	109.5
N(2)-C(121)-C(14)	111.8(5)
N(2)-C(121)-C(151)	95(4)
C(14)-C(121)-C(151)	118(3)
N(2)-C(121)-C(13)	105.7(5)
C(14)-C(121)-C(13)	109.8(6)
C(151)-C(121)-C(13)	114.2(18)
O(41)-C(151)-C(121)	113(3)
O(41)-C(151)-H(15C)	109.0
С(121)-С(151)-Н(15С)	109.0
O(41)-C(151)-H(15D)	109.0
C(121)-C(151)-H(15D)	109.0
H(15C)-C(151)-H(15D)	107.8
C(151)-O(41)-H(41)	109.5

C(6)-N(1)-C(5)-C(4)	171.6(6)
C(2)-N(1)-C(5)-C(4)	-8.1(7)
C(3)-C(4)-C(5)-N(1)	24.2(7)
C(5)-N(1)-C(6)-O(2)	2.0(9)
C(2)-N(1)-C(6)-O(2)	-178.3(5)
C(5)-N(1)-C(6)-O(1)	-177.7(5)
C(2)-N(1)-C(6)-O(1)	2.0(8)
C(7)-O(1)-C(6)-O(2)	4.7(9)
C(7)-O(1)-C(6)-N(1)	-175.7(5)
C(6)-O(1)-C(7)-C(9)	-178.3(6)

Table S3. Torsion angles [°] for 4.

C(6)-N(1)-C(2)-C(8)	-71.6(7)	C(6)-O(1)-C(7)-C(10)	-60.3(7)
C(5)-N(1)-C(2)-C(8)	108.1(6)	C(6)-O(1)-C(7)-C(11)	61.9(8)
C(6)-N(1)-C(2)-C(3)	169.0(5)	C(121)-N(2)-C(8)-O(3)	0.5(9)
C(5)-N(1)-C(2)-C(3)	-11.3(6)	C(12)-N(2)-C(8)-O(3)	0.5(9)
N(1)-C(2)-C(3)-C(4)	25.7(7)	C(121)-N(2)-C(8)-C(2)	174.8(5)
C(8)-C(2)-C(3)-C(4)	-93.6(6)	C(12)-N(2)-C(8)-C(2)	174.8(5)
C(2)-C(3)-C(4)-C(5)	-31.8(8)	N(1)-C(2)-C(8)-O(3)	-27.3(8)

C(3)-C(2)-C(8)-O(3)	86.1(7)
N(1)-C(2)-C(8)-N(2)	158.3(4)
C(3)-C(2)-C(8)-N(2)	-88.4(6)
C(8)-N(2)-C(12)-C(15)	80.4(8)
C(8)-N(2)-C(12)-C(14)	-43.4(9)
C(8)-N(2)-C(12)-C(13)	-163.0(6)
N(2)-C(12)-C(15)-O(4)	177.3(8)
C(14)-C(12)-C(15)-O(4)	-58.7(11)
C(13)-C(12)-C(15)-O(4)	62.6(11)
C(8)-N(2)-C(121)-C(14)	-43.4(9)

- C(8)-N(2)-C(121)-C(151) 80.1(19)
- C(8)-N(2)-C(121)-C(13) -163.0(6)
- N(2)-C(121)-C(151)-O(41) 94(7)
- C(14)-C(121)-C(151)-O(41) -147(5)
- C(13)-C(121)-C(151)-O(41) -15(9)

Table S4. Hydrogen bonds for 4 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(2)-H(2)O(2)#1	0.86	2.04	2.892(6)	173.7	
C(2)-H(2A)O(2)#1	0.98	2.65	3.329(6)	126.8	
C(10)-H(10C)O(2)	0.96	2.40	2.927(8)	114.3	
C(11)-H(11A)O(2)	0.96	2.45	3.009(9)	116.8	
C(14)-H(14C)O(3)	0.96	2.46	2.950(10)	111.1	
O(4)-H(4)O(3)#2	0.82	2.04	2.808(6)	155.5	

Symmetry transformations used to generate equivalent atoms:

#1-x+2,y+1/2,-z+1/2 #2-x+1,y+1/2,-z+1/2

Table S5. Crystal data and structure refinement for L3d.

Empirical formula	C28 H47 N4 O4 P
Formula weight	534.66
Temperature	295(2) K
Wavelength	1.54186 Å
Crystal system	Orthorhombic
Space group	P 21 21 21
Unit cell dimensions	a = 11.6047(3) Å α = 90°.
	b = 17.8713(4) Å β = 90°.
	c = 29.6253(6) Å γ = 90°.
Volume	6144.0(2) Å ³
Z	8
Density (calculated)	1.156 Mg/m ³
Absorption coefficient	1.085 mm ⁻¹
F(000)	2320
Crystal size	.23 x .18 x .16 mm ³
Theta range for data collection	3.876 to 74.045°.
Index ranges	-13<=h<=14, -17<=k<=22, -36<=l<=31
Reflections collected	108123
Independent reflections	12078 [R(int) = 0.0404]
Completeness to theta = 67.686°	100.0 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	12078 / 0 / 692
Goodness-of-fit on F ²	0.945
Final R indices [I>2sigma(I)]	R1 = 0.0388, wR2 = 0.0932
R indices (all data)	R1 = 0.0497, wR2 = 0.0976
Absolute structure parameter	-0.002(5)
Extinction coefficient	0.00050(7)
Largest diff. peak and hole	0.418 and -0.249 e.Å ⁻³

 Table S6.
 Bond lengths [Å] and angles [°] for L3d.

P(1)-O(1)	1.618(2)	C(7)-H(7)	0.9300
P(1)-N(2)	1.662(3)	C(8)-C(9)	1.345(7)
P(1)-N(1)	1.715(2)	C(8)-H(8)	0.9300
O(1)-C(3)	1.431(3)	C(9)-C(10)	1.350(6)
O(3)-C(16)	1.325(3)	С(9)-Н(9)	0.9300
O(3)-C(17)	1.466(3)	C(10)-C(11)	1.378(5)
O(4)-C(16)	1.210(3)	C(10)-H(10)	0.9300
N(1)-C(6)	1.398(4)	C(11)-H(11)	0.9300
N(1)-C(5)	1.450(4)	C(12)-C(13)	1.491(7)
N(2)-C(4)	1.457(4)	C(12)-H(12A)	0.9700
N(2)-C(12)	1.465(5)	C(12)-H(12B)	0.9700
N(30)-C(1)	1.313(4)	C(13)-C(14)	1.440(7)
N(30)-C(2)	1.452(3)	C(13)-H(13A)	0.9700
N(30)-H(30)	0.8600	C(13)-H(13B)	0.9700
N(40)-C(16)	1.334(3)	C(14)-H(14A)	0.9700
N(40)-C(15)	1.451(3)	C(14)-H(14B)	0.9700
N(40)-H(40)	0.8600	C(15)-C(19)	1.540(4)
C(1)-O(2)	1.218(4)	C(15)-H(15)	1.01(3)
C(1)-C(15)	1.536(4)	C(17)-C(24)	1.490(4)
C(2)-C(3)	1.512(4)	C(17)-C(23)	1.495(5)
C(2)-C(18)	1.540(4)	C(17)-C(25)	1.507(5)
C(2)-H(2)	0.94(3)	C(18)-C(22)	1.508(4)
C(3)-H(3A)	0.9700	C(18)-C(21)	1.521(4)
C(3)-H(3B)	0.9700	C(18)-C(20)	1.531(4)
C(4)-C(5)	1.509(5)	C(19)-C(27)	1.515(5)
C(4)-C(14)	1.513(5)	C(19)-C(26)	1.519(5)
C(4)-H(4)	0.94(4)	C(19)-C(28)	1.519(4)
C(5)-H(5A)	0.9700	C(20)-H(20A)	0.9600
С(5)-Н(5В)	0.9700	C(20)-H(20B)	0.9600
C(6)-C(11)	1.374(5)	C(20)-H(20C)	0.9600
C(6)-C(7)	1.383(4)	C(21)-H(21A)	0.9600
C(7)-C(8)	1.386(6)	C(21)-H(21B)	0.9600

C(21)-H(21C)	0.9600	N(2A)-C(12A)	1.469(4)
C(22)-H(22A)	0.9600	N(30A)-C(1A)	1.330(3)
С(22)-Н(22В)	0.9600	N(30A)-C(2A)	1.448(3)
C(22)-H(22C)	0.9600	N(30A)-H(30A)	0.8600
С(23)-Н(23А)	0.9600	N(40A)-C(16A)	1.346(3)
С(23)-Н(23В)	0.9600	N(40A)-C(15A)	1.448(3)
С(23)-Н(23С)	0.9600	N(40A)-H(40A)	0.8600
C(24)-H(24A)	0.9600	C(1A)-C(15A)	1.527(3)
C(24)-H(24B)	0.9600	C(2A)-C(3A)	1.503(4)
С(24)-Н(24С)	0.9600	C(2A)-C(18A)	1.545(4)
С(25)-Н(25А)	0.9600	C(2A)-H(2A)	0.94(3)
С(25)-Н(25В)	0.9600	C(3A)-H(3A1)	0.9700
С(25)-Н(25С)	0.9600	C(3A)-H(3A2)	0.9700
C(26)-H(26A)	0.9600	C(4A)-C(5A)	1.511(5)
С(26)-Н(26В)	0.9600	C(4A)-C(14A)	1.522(5)
C(26)-H(26C)	0.9600	C(4A)-H(4A)	1.00(3)
С(27)-Н(27А)	0.9600	C(5A)-H(5A1)	0.9700
С(27)-Н(27В)	0.9600	C(5A)-H(5A2)	0.9700
С(27)-Н(27С)	0.9600	C(6A)-C(7A)	1.378(4)
C(28)-H(28A)	0.9600	C(6A)-C(11A)	1.384(4)
C(28)-H(28B)	0.9600	C(7A)-C(8A)	1.364(5)
C(28)-H(28C)	0.9600	C(7A)-H(7A)	0.9300
P(1A)-O(1A)	1.620(2)	C(8A)-C(9A)	1.363(6)
P(1A)-N(2A)	1.662(3)	C(8A)-H(8A)	0.9300
P(1A)-N(1A)	1.724(2)	C(9A)-C(10A)	1.359(6)
O(1A)-C(3A)	1.422(3)	C(9A)-H(9A)	0.9300
O(2A)-C(1A)	1.210(3)	C(10A)-C(11A)	1.371(5)
O(3A)-C(16A)	1.332(3)	C(10A)-H(10A)	0.9300
O(3A)-C(17A)	1.462(3)	C(11A)-H(11A)	0.9300
O(4A)-C(16A)	1.200(3)	C(12A)-C(13A)	1.503(5)
N(1A)-C(6A)	1.403(4)	C(12A)-H(12C)	0.9700
N(1A)-C(5A)	1.438(4)	C(12A)-H(12D)	0.9700
N(2A)-C(4A)	1.468(4)	C(13A)-C(14A)	1.487(6)

C(13A)-H(13C)	0.9700	C(26A)-H(26D)	0.9600
C(13A)-H(13D)	0.9700	C(26A)-H(26E)	0.9600
C(14A)-H(14C)	0.9700	C(26A)-H(26F)	0.9600
C(14A)-H(14D)	0.9700	C(27A)-H(27D)	0.9600
C(15A)-C(19A)	1.534(4)	C(27A)-H(27E)	0.9600
C(15A)-H(15A)	0.93(3)	C(27A)-H(27F)	0.9600
C(17A)-C(24A)	1.491(4)	C(28A)-H(28D)	0.9600
C(17A)-C(23A)	1.494(4)	C(28A)-H(28E)	0.9600
C(17A)-C(25A)	1.509(4)	C(28A)-H(28F)	0.9600
C(18A)-C(21A)	1.506(5)	O(1)-P(1)-N(2)	106.02(12)
C(18A)-C(22A)	1.510(6)	O(1)-P(1)-N(1)	102.67(11)
C(18A)-C(20A)	1.513(5)	N(2)-P(1)-N(1)	90.81(12)
C(19A)-C(27A)	1.516(4)	C(3)-O(1)-P(1)	123.85(16)
C(19A)-C(26A)	1.520(4)	C(16)-O(3)-C(17)	121.42(19)
C(19A)-C(28A)	1.527(4)	C(6)-N(1)-C(5)	120.9(2)
C(20A)-H(20D)	0.9600	C(6)-N(1)-P(1)	121.71(18)
C(20A)-H(20E)	0.9600	C(5)-N(1)-P(1)	112.8(2)
C(20A)-H(20F)	0.9600	C(4)-N(2)-C(12)	109.4(3)
C(21A)-H(21D)	0.9600	C(4)-N(2)-P(1)	115.6(2)
C(21A)-H(21E)	0.9600	C(12)-N(2)-P(1)	122.0(2)
C(21A)-H(21F)	0.9600	C(1)-N(30)-C(2)	127.1(2)
C(22A)-H(22D)	0.9600	C(1)-N(30)-H(30)	116.5
C(22A)-H(22E)	0.9600	C(2)-N(30)-H(30)	116.5
C(22A)-H(22F)	0.9600	C(16)-N(40)-C(15)	126.5(2)
C(23A)-H(23D)	0.9600	C(16)-N(40)-H(40)	116.7
C(23A)-H(23E)	0.9600	C(15)-N(40)-H(40)	116.7
C(23A)-H(23F)	0.9600	O(2)-C(1)-N(30)	121.6(3)
C(24A)-H(24D)	0.9600	O(2)-C(1)-C(15)	124.2(3)
C(24A)-H(24E)	0.9600	N(30)-C(1)-C(15)	113.8(2)
C(24A)-H(24F)	0.9600	N(30)-C(2)-C(3)	107.5(2)
C(25A)-H(25D)	0.9600	N(30)-C(2)-C(18)	112.8(2)
C(25A)-H(25E)	0.9600	C(3)-C(2)-C(18)	115.4(2)
C(25A)-H(25F)	0.9600	N(30)-C(2)-H(2)	106.9

C(3)-C(2)-H(2)	106.9	C(9)-C(10)-H(10)	119.7
C(18)-C(2)-H(2)	106.9	C(11)-C(10)-H(10)	119.7
O(1)-C(3)-C(2)	108.98(19)	C(6)-C(11)-C(10)	120.4(4)
O(1)-C(3)-H(3A)	109.9	C(6)-C(11)-H(11)	119.8
C(2)-C(3)-H(3A)	109.9	C(10)-C(11)-H(11)	119.8
O(1)-C(3)-H(3B)	109.9	N(2)-C(12)-C(13)	103.6(4)
C(2)-C(3)-H(3B)	109.9	N(2)-C(12)-H(12A)	111.0
H(3A)-C(3)-H(3B)	108.3	C(13)-C(12)-H(12A)	111.0
N(2)-C(4)-C(5)	105.7(3)	N(2)-C(12)-H(12B)	111.0
N(2)-C(4)-C(14)	105.4(3)	C(13)-C(12)-H(12B)	111.0
C(5)-C(4)-C(14)	115.5(3)	H(12A)-C(12)-H(12B)	109.0
N(2)-C(4)-H(4)	110.0	C(14)-C(13)-C(12)	106.4(4)
C(5)-C(4)-H(4)	110.0	C(14)-C(13)-H(13A)	110.5
C(14)-C(4)-H(4)	110.0	C(12)-C(13)-H(13A)	110.5
N(1)-C(5)-C(4)	105.2(2)	C(14)-C(13)-H(13B)	110.5
N(1)-C(5)-H(5A)	110.7	C(12)-C(13)-H(13B)	110.5
C(4)-C(5)-H(5A)	110.7	H(13A)-C(13)-H(13B)	108.6
N(1)-C(5)-H(5B)	110.7	C(13)-C(14)-C(4)	104.8(3)
C(4)-C(5)-H(5B)	110.7	C(13)-C(14)-H(14A)	110.8
H(5A)-C(5)-H(5B)	108.8	C(4)-C(14)-H(14A)	110.8
C(11)-C(6)-C(7)	118.4(3)	C(13)-C(14)-H(14B)	110.8
C(11)-C(6)-N(1)	120.6(3)	C(4)-C(14)-H(14B)	110.8
C(7)-C(6)-N(1)	120.9(3)	H(14A)-C(14)-H(14B)	108.9
C(6)-C(7)-C(8)	119.8(4)	N(40)-C(15)-C(1)	108.5(2)
C(6)-C(7)-H(7)	120.1	N(40)-C(15)-C(19)	112.8(2)
C(8)-C(7)-H(7)	120.1	C(1)-C(15)-C(19)	115.8(2)
C(9)-C(8)-C(7)	120.7(4)	N(40)-C(15)-H(15)	106.3
C(9)-C(8)-H(8)	119.6	C(1)-C(15)-H(15)	106.3
C(7)-C(8)-H(8)	119.6	C(19)-C(15)-H(15)	106.3
C(8)-C(9)-C(10)	120.1(4)	O(4)-C(16)-O(3)	124.6(2)
С(8)-С(9)-Н(9)	120.0	O(4)-C(16)-N(40)	123.0(2)
С(10)-С(9)-Н(9)	120.0	O(3)-C(16)-N(40)	112.3(2)
C(9)-C(10)-C(11)	120.6(4)	O(3)-C(17)-C(24)	111.3(2)

O(3)-C(17)-C(23)	108.5(3)	H(22A)-C(22)-H(22C)	109.5
C(24)-C(17)-C(23)	113.0(3)	H(22B)-C(22)-H(22C)	109.5
O(3)-C(17)-C(25)	101.3(2)	C(17)-C(23)-H(23A)	109.5
C(24)-C(17)-C(25)	110.2(3)	C(17)-C(23)-H(23B)	109.5
C(23)-C(17)-C(25)	111.9(3)	H(23A)-C(23)-H(23B)	109.5
C(22)-C(18)-C(21)	109.7(3)	C(17)-C(23)-H(23C)	109.5
C(22)-C(18)-C(20)	109.1(3)	H(23A)-C(23)-H(23C)	109.5
C(21)-C(18)-C(20)	108.4(3)	H(23B)-C(23)-H(23C)	109.5
C(22)-C(18)-C(2)	112.5(3)	C(17)-C(24)-H(24A)	109.5
C(21)-C(18)-C(2)	108.4(3)	C(17)-C(24)-H(24B)	109.5
C(20)-C(18)-C(2)	108.6(2)	H(24A)-C(24)-H(24B)	109.5
C(27)-C(19)-C(26)	109.1(3)	C(17)-C(24)-H(24C)	109.5
C(27)-C(19)-C(28)	108.3(3)	H(24A)-C(24)-H(24C)	109.5
C(26)-C(19)-C(28)	111.0(3)	H(24B)-C(24)-H(24C)	109.5
C(27)-C(19)-C(15)	107.2(3)	C(17)-C(25)-H(25A)	109.5
C(26)-C(19)-C(15)	111.8(3)	C(17)-C(25)-H(25B)	109.5
C(28)-C(19)-C(15)	109.4(3)	H(25A)-C(25)-H(25B)	109.5
C(18)-C(20)-H(20A)	109.5	C(17)-C(25)-H(25C)	109.5
C(18)-C(20)-H(20B)	109.5	H(25A)-C(25)-H(25C)	109.5
H(20A)-C(20)-H(20B)	109.5	H(25B)-C(25)-H(25C)	109.5
C(18)-C(20)-H(20C)	109.5	C(19)-C(26)-H(26A)	109.5
H(20A)-C(20)-H(20C)	109.5	C(19)-C(26)-H(26B)	109.5
H(20B)-C(20)-H(20C)	109.5	H(26A)-C(26)-H(26B)	109.5
C(18)-C(21)-H(21A)	109.5	C(19)-C(26)-H(26C)	109.5
C(18)-C(21)-H(21B)	109.5	H(26A)-C(26)-H(26C)	109.5
H(21A)-C(21)-H(21B)	109.5	H(26B)-C(26)-H(26C)	109.5
C(18)-C(21)-H(21C)	109.5	C(19)-C(27)-H(27A)	109.5
H(21A)-C(21)-H(21C)	109.5	С(19)-С(27)-Н(27В)	109.5
H(21B)-C(21)-H(21C)	109.5	H(27A)-C(27)-H(27B)	109.5
C(18)-C(22)-H(22A)	109.5	C(19)-C(27)-H(27C)	109.5
C(18)-C(22)-H(22B)	109.5	H(27A)-C(27)-H(27C)	109.5
H(22A)-C(22)-H(22B)	109.5	H(27B)-C(27)-H(27C)	109.5
C(18)-C(22)-H(22C)	109.5	C(19)-C(28)-H(28A)	109.5

C(19)-C(28)-H(28B)	109.5	C(2A)-C(3A)-H(3A1)	109.5
H(28A)-C(28)-H(28B)	109.5	O(1A)-C(3A)-H(3A2)	109.5
C(19)-C(28)-H(28C)	109.5	C(2A)-C(3A)-H(3A2)	109.5
H(28A)-C(28)-H(28C)	109.5	H(3A1)-C(3A)-H(3A2)	108.1
H(28B)-C(28)-H(28C)	109.5	N(2A)-C(4A)-C(5A)	105.6(2)
O(1A)-P(1A)-N(2A)	105.67(12)	N(2A)-C(4A)-C(14A)	103.9(3)
O(1A)-P(1A)-N(1A)	102.73(12)	C(5A)-C(4A)-C(14A)	115.7(3)
N(2A)-P(1A)-N(1A)	90.47(12)	N(2A)-C(4A)-H(4A)	110.4
C(3A)-O(1A)-P(1A)	122.84(16)	C(5A)-C(4A)-H(4A)	110.4
C(16A)-O(3A)-C(17A)	121.57(19)	C(14A)-C(4A)-H(4A)	110.4
C(6A)-N(1A)-C(5A)	120.6(2)	N(1A)-C(5A)-C(4A)	106.3(2)
C(6A)-N(1A)-P(1A)	120.6(2)	N(1A)-C(5A)-H(5A1)	110.5
C(5A)-N(1A)-P(1A)	113.71(19)	C(4A)-C(5A)-H(5A1)	110.5
C(4A)-N(2A)-C(12A)	109.6(3)	N(1A)-C(5A)-H(5A2)	110.5
C(4A)-N(2A)-P(1A)	116.2(2)	C(4A)-C(5A)-H(5A2)	110.5
C(12A)-N(2A)-P(1A)	120.9(2)	H(5A1)-C(5A)-H(5A2)	108.7
C(1A)-N(30A)-C(2A)	122.9(2)	C(7A)-C(6A)-C(11A)	118.5(3)
C(1A)-N(30A)-H(30A)	118.6	C(7A)-C(6A)-N(1A)	121.6(3)
C(2A)-N(30A)-H(30A)	118.6	C(11A)-C(6A)-N(1A)	119.8(3)
C(16A)-N(40A)-C(15A)	121.4(2)	C(8A)-C(7A)-C(6A)	120.3(4)
C(16A)-N(40A)-H(40A)	119.3	C(8A)-C(7A)-H(7A)	119.8
C(15A)-N(40A)-H(40A)	119.3	C(6A)-C(7A)-H(7A)	119.8
O(2A)-C(1A)-N(30A)	123.8(2)	C(9A)-C(8A)-C(7A)	121.3(4)
O(2A)-C(1A)-C(15A)	121.3(2)	C(9A)-C(8A)-H(8A)	119.4
N(30A)-C(1A)-C(15A)	114.9(2)	C(7A)-C(8A)-H(8A)	119.4
N(30A)-C(2A)-C(3A)	110.4(2)	C(10A)-C(9A)-C(8A)	118.6(4)
N(30A)-C(2A)-C(18A)	111.3(2)	C(10A)-C(9A)-H(9A)	120.7
C(3A)-C(2A)-C(18A)	117.0(2)	C(8A)-C(9A)-H(9A)	120.7
N(30A)-C(2A)-H(2A)	105.7	C(9A)-C(10A)-C(11A)	121.5(4)
С(ЗА)-С(2А)-Н(2А)	105.7	C(9A)-C(10A)-H(10A)	119.2
C(18A)-C(2A)-H(2A)	105.7	C(11A)-C(10A)-H(10A)	119.2
O(1A)-C(3A)-C(2A)	110.8(2)	C(10A)-C(11A)-C(6A)	119.8(4)
O(1A)-C(3A)-H(3A1)	109.5	C(10A)-C(11A)-H(11A)	120.1

C(6A)-C(11A)-H(11A)	120.1	C(23A)-C(17A)-C(25A)	110.3(3)
N(2A)-C(12A)-C(13A)	103.9(3)	C(21A)-C(18A)-C(22A)	108.0(3)
N(2A)-C(12A)-H(12C)	111.0	C(21A)-C(18A)-C(20A)	108.6(4)
C(13A)-C(12A)-H(12C)	111.0	C(22A)-C(18A)-C(20A)	110.3(4)
N(2A)-C(12A)-H(12D)	111.0	C(21A)-C(18A)-C(2A)	112.9(3)
C(13A)-C(12A)-H(12D)	111.0	C(22A)-C(18A)-C(2A)	108.0(3)
H(12C)-C(12A)-H(12D)	109.0	C(20A)-C(18A)-C(2A)	109.0(3)
C(14A)-C(13A)-C(12A)	102.4(3)	C(27A)-C(19A)-C(26A)	110.0(2)
C(14A)-C(13A)-H(13C)	111.3	C(27A)-C(19A)-C(28A)	108.6(2)
C(12A)-C(13A)-H(13C)	111.3	C(26A)-C(19A)-C(28A)	109.8(2)
C(14A)-C(13A)-H(13D)	111.3	C(27A)-C(19A)-C(15A)	107.8(2)
C(12A)-C(13A)-H(13D)	111.3	C(26A)-C(19A)-C(15A)	112.4(2)
H(13C)-C(13A)-H(13D)	109.2	C(28A)-C(19A)-C(15A)	108.2(2)
C(13A)-C(14A)-C(4A)	105.5(3)	C(18A)-C(20A)-H(20D)	109.5
C(13A)-C(14A)-H(14C)	110.6	C(18A)-C(20A)-H(20E)	109.5
C(4A)-C(14A)-H(14C)	110.6	H(20D)-C(20A)-H(20E)	109.5
C(13A)-C(14A)-H(14D)	110.6	C(18A)-C(20A)-H(20F)	109.5
C(4A)-C(14A)-H(14D)	110.6	H(20D)-C(20A)-H(20F)	109.5
H(14C)-C(14A)-H(14D)	108.8	H(20E)-C(20A)-H(20F)	109.5
N(40A)-C(15A)-C(1A)	107.4(2)	C(18A)-C(21A)-H(21D)	109.5
N(40A)-C(15A)-C(19A)	112.3(2)	C(18A)-C(21A)-H(21E)	109.5
C(1A)-C(15A)-C(19A)	114.2(2)	H(21D)-C(21A)-H(21E)	109.5
N(40A)-C(15A)-H(15A)	107.5	C(18A)-C(21A)-H(21F)	109.5
C(1A)-C(15A)-H(15A)	107.5	H(21D)-C(21A)-H(21F)	109.5
C(19A)-C(15A)-H(15A)	107.5	H(21E)-C(21A)-H(21F)	109.5
O(4A)-C(16A)-O(3A)	125.3(2)	C(18A)-C(22A)-H(22D)	109.5
O(4A)-C(16A)-N(40A)	125.0(2)	C(18A)-C(22A)-H(22E)	109.5
O(3A)-C(16A)-N(40A)	109.7(2)	H(22D)-C(22A)-H(22E)	109.5
O(3A)-C(17A)-C(24A)	110.4(2)	C(18A)-C(22A)-H(22F)	109.5
O(3A)-C(17A)-C(23A)	101.9(2)	H(22D)-C(22A)-H(22F)	109.5
C(24A)-C(17A)-C(23A)	110.6(3)	H(22E)-C(22A)-H(22F)	109.5
O(3A)-C(17A)-C(25A)	109.6(2)	C(17A)-C(23A)-H(23D)	109.5
C(24A)-C(17A)-C(25A)	113.4(3)	C(17A)-C(23A)-H(23E)	109.5

H(23D)-C(23A)-H(23E)	109.5	H(28E)-C(28A)-H(28F)
C(17A)-C(23A)-H(23F)	109.5	
H(23D)-C(23A)-H(23F)	109.5	
H(23E)-C(23A)-H(23F)	109.5	
C(17A)-C(24A)-H(24D)	109.5	
C(17A)-C(24A)-H(24E)	109.5	
H(24D)-C(24A)-H(24E)	109.5	
C(17A)-C(24A)-H(24F)	109.5	
H(24D)-C(24A)-H(24F)	109.5	
H(24E)-C(24A)-H(24F)	109.5	
C(17A)-C(25A)-H(25D)	109.5	
C(17A)-C(25A)-H(25E)	109.5	
H(25D)-C(25A)-H(25E)	109.5	
C(17A)-C(25A)-H(25F)	109.5	
H(25D)-C(25A)-H(25F)	109.5	
H(25E)-C(25A)-H(25F)	109.5	
C(19A)-C(26A)-H(26D)	109.5	
C(19A)-C(26A)-H(26E)	109.5	
H(26D)-C(26A)-H(26E)	109.5	
C(19A)-C(26A)-H(26F)	109.5	
H(26D)-C(26A)-H(26F)	109.5	
H(26E)-C(26A)-H(26F)	109.5	
C(19A)-C(27A)-H(27D)	109.5	
C(19A)-C(27A)-H(27E)	109.5	
H(27D)-C(27A)-H(27E)	109.5	
C(19A)-C(27A)-H(27F)	109.5	
H(27D)-C(27A)-H(27F)	109.5	
H(27E)-C(27A)-H(27F)	109.5	
C(19A)-C(28A)-H(28D)	109.5	
C(19A)-C(28A)-H(28E)	109.5	
H(28D)-C(28A)-H(28E)	109.5	
C(19A)-C(28A)-H(28F)	109.5	
H(28D)-C(28A)-H(28F)	109.5	

109.5

Table S7. Torsion angles [°] for L3d.

N(2)-P(1)-O(1)-C(3)	48.5(2)	C(7)-C(8)-C(9)-C(10)	0.1(7)
N(1)-P(1)-O(1)-C(3)	-46.0(2)	C(8)-C(9)-C(10)-C(11)	-0.1(7)
O(1)-P(1)-N(1)-C(6)	-80.3(2)	C(7)-C(6)-C(11)-C(10)	1.3(5)
N(2)-P(1)-N(1)-C(6)	173.1(2)	N(1)-C(6)-C(11)-C(10)	-179.6(3)
O(1)-P(1)-N(1)-C(5)	123.6(2)	C(9)-C(10)-C(11)-C(6)	-0.6(6)
N(2)-P(1)-N(1)-C(5)	17.0(2)	C(4)-N(2)-C(12)-C(13)	-17.3(4)
O(1)-P(1)-N(2)-C(4)	-100.1(2)	P(1)-N(2)-C(12)-C(13)	122.2(3)
N(1)-P(1)-N(2)-C(4)	3.4(2)	N(2)-C(12)-C(13)-C(14)	30.7(5)
O(1)-P(1)-N(2)-C(12)	122.7(3)	C(12)-C(13)-C(14)-C(4)	-32.0(6)
N(1)-P(1)-N(2)-C(12)	-133.8(3)	N(2)-C(4)-C(14)-C(13)	20.8(5)
C(2)-N(30)-C(1)-O(2)	-9.6(6)	C(5)-C(4)-C(14)-C(13)	-95.6(5)
C(2)-N(30)-C(1)-C(15)	176.5(3)	C(16)-N(40)-C(15)-C(1)	-115.4(3)
C(1)-N(30)-C(2)-C(3)	-122.1(3)	C(16)-N(40)-C(15)-C(19)	114.8(3)
C(1)-N(30)-C(2)-C(18)	109.5(3)	O(2)-C(1)-C(15)-N(40)	-115.0(4)
P(1)-O(1)-C(3)-C(2)	-171.95(19)	N(30)-C(1)-C(15)-N(40)	58.7(4)
N(30)-C(2)-C(3)-O(1)	-46.3(3)	O(2)-C(1)-C(15)-C(19)	13.1(5)
C(18)-C(2)-C(3)-O(1)	80.6(3)	N(30)-C(1)-C(15)-C(19)	-173.2(3)
C(12)-N(2)-C(4)-C(5)	121.2(3)	C(17)-O(3)-C(16)-O(4)	-6.7(4)
P(1)-N(2)-C(4)-C(5)	-21.2(3)	C(17)-O(3)-C(16)-N(40)	173.7(2)
C(12)-N(2)-C(4)-C(14)	-1.6(4)	C(15)-N(40)-C(16)-O(4)	176.4(3)
P(1)-N(2)-C(4)-C(14)	-144.0(3)	C(15)-N(40)-C(16)-O(3)	-3.9(4)
C(6)-N(1)-C(5)-C(4)	172.7(3)	C(16)-O(3)-C(17)-C(24)	59.9(3)
P(1)-N(1)-C(5)-C(4)	-30.9(3)	C(16)-O(3)-C(17)-C(23)	-65.1(3)
N(2)-C(4)-C(5)-N(1)	31.1(4)	C(16)-O(3)-C(17)-C(25)	177.0(3)
C(14)-C(4)-C(5)-N(1)	147.2(3)	N(30)-C(2)-C(18)-C(22)	67.4(3)
C(5)-N(1)-C(6)-C(11)	-171.4(3)	C(3)-C(2)-C(18)-C(22)	-56.7(3)
P(1)-N(1)-C(6)-C(11)	34.3(4)	N(30)-C(2)-C(18)-C(21)	-54.0(3)
C(5)-N(1)-C(6)-C(7)	7.7(4)	C(3)-C(2)-C(18)-C(21)	-178.1(3)
P(1)-N(1)-C(6)-C(7)	-146.5(2)	N(30)-C(2)-C(18)-C(20)	-171.6(2)
C(11)-C(6)-C(7)-C(8)	-1.3(5)	C(3)-C(2)-C(18)-C(20)	64.3(3)
N(1)-C(6)-C(7)-C(8)	179.5(3)	N(40)-C(15)-C(19)-C(27)	-59.9(3)
C(6)-C(7)-C(8)-C(9)	0.6(6)	C(1)-C(15)-C(19)-C(27)	174.1(3)

N(40)-C(15)-C(19)-C(26)	59.6(3)	C(11A)-C(6A)-C(7A)-C(8A)	-1.8(5)
C(1)-C(15)-C(19)-C(26)	-66.4(4)	N(1A)-C(6A)-C(7A)-C(8A)	178.1(3)
N(40)-C(15)-C(19)-C(28)	-177.1(3)	C(6A)-C(7A)-C(8A)-C(9A)	0.3(6)
C(1)-C(15)-C(19)-C(28)	56.9(4)	C(7A)-C(8A)-C(9A)-C(10A)	1.6(6)
N(2A)-P(1A)-O(1A)-C(3A)	46.0(2)	C(8A)-C(9A)-C(10A)-C(11A)	-2.0(7)
N(1A)-P(1A)-O(1A)-C(3A)	-48.2(2)	C(9A)-C(10A)-C(11A)-C(6A)	0.5(6)
O(1A)-P(1A)-N(1A)-C(6A)	-83.5(2)	C(7A)-C(6A)-C(11A)-C(10A)	1.4(5)
N(2A)-P(1A)-N(1A)-C(6A)	170.3(2)	N(1A)-C(6A)-C(11A)-C(10A)	-178.5(3)
O(1A)-P(1A)-N(1A)-C(5A)	121.4(2)	C(4A)-N(2A)-C(12A)-C(13A)	-23.5(4)
N(2A)-P(1A)-N(1A)-C(5A)	15.2(2)	P(1A)-N(2A)-C(12A)-C(13A)	115.9(3)
O(1A)-P(1A)-N(2A)-C(4A)	-100.5(2)	N(2A)-C(12A)-C(13A)-C(14A)	36.6(4)
N(1A)-P(1A)-N(2A)-C(4A)	2.9(2)	C(12A)-C(13A)-C(14A)-C(4A)	-36.7(4)
O(1A)-P(1A)-N(2A)-C(12A)	122.6(2)	N(2A)-C(4A)-C(14A)-C(13A)	22.6(4)
N(1A)-P(1A)-N(2A)-C(12A)	-134.0(3)	C(5A)-C(4A)-C(14A)-C(13A)	-92.7(4)
C(2A)-N(30A)-C(1A)-O(2A)	6.4(4)	C(16A)-N(40A)-C(15A)-C(1A)	-90.4(3)
C(2A)-N(30A)-C(1A)-C(15A)	-171.5(2)	C(16A)-N(40A)-C(15A)-C(19A)	143.3(2)
C(1A)-N(30A)-C(2A)-C(3A)	-112.2(3)	O(2A)-C(1A)-C(15A)-N(40A)	-53.1(3)
C(1A)-N(30A)-C(2A)-C(18A)	116.1(3)	N(30A)-C(1A)-C(15A)-N(40A)	124.8(2)
P(1A)-O(1A)-C(3A)-C(2A)	-165.48(19)	O(2A)-C(1A)-C(15A)-C(19A)	72.2(3)
N(30A)-C(2A)-C(3A)-O(1A)	-59.9(3)	N(30A)-C(1A)-C(15A)-C(19A)	-110.0(3)
C(18A)-C(2A)-C(3A)-O(1A)	68.8(3)	C(17A)-O(3A)-C(16A)-O(4A)	3.6(4)
C(12A)-N(2A)-C(4A)-C(5A)	123.0(3)	C(17A)-O(3A)-C(16A)-N(40A)	-177.2(2)
P(1A)-N(2A)-C(4A)-C(5A)	-18.5(3)	C(15A)-N(40A)-C(16A)-O(4A)	-11.3(4)
C(12A)-N(2A)-C(4A)-C(14A)	0.8(4)	C(15A)-N(40A)-C(16A)-O(3A)	169.6(2)
P(1A)-N(2A)-C(4A)-C(14A)	-140.7(2)	C(16A)-O(3A)-C(17A)-C(24A)	-63.4(3)
C(6A)-N(1A)-C(5A)-C(4A)	177.2(3)	C(16A)-O(3A)-C(17A)-C(23A)	179.1(3)
P(1A)-N(1A)-C(5A)-C(4A)	-27.7(3)	C(16A)-O(3A)-C(17A)-C(25A)	62.2(3)
N(2A)-C(4A)-C(5A)-N(1A)	27.5(3)	N(30A)-C(2A)-C(18A)-C(21A)	60.7(4)
C(14A)-C(4A)-C(5A)-N(1A)	141.8(3)	C(3A)-C(2A)-C(18A)-C(21A)	-67.6(4)
C(5A)-N(1A)-C(6A)-C(7A)	9.4(4)	N(30A)-C(2A)-C(18A)-C(22A)	-58.7(4)
P(1A)-N(1A)-C(6A)-C(7A)	-144.0(3)	C(3A)-C(2A)-C(18A)-C(22A)	173.1(3)
C(5A)-N(1A)-C(6A)-C(11A)	-170.7(3)	N(30A)-C(2A)-C(18A)-C(20A)	-178.5(4)
P(1A)-N(1A)-C(6A)-C(11A)	35.9(4)	C(3A)-C(2A)-C(18A)-C(20A)	53.2(4)

- N(40A)-C(15A)-C(19A)-C(27A) -65.3(3)
- C(1A)-C(15A)-C(19A)-C(27A) 172.1(2)
- N(40A)-C(15A)-C(19A)-C(26A) 56.1(3)
- C(1A)-C(15A)-C(19A)-C(26A) -66.5(3)
- N(40A)-C(15A)-C(19A)-C(28A) 177.5(2)
- C(1A)-C(15A)-C(19A)-C(28A) 54.9(3)

Table S8. Hydrogen bonds for L3d [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(40)-H(40)O(4A)	0.86	2.06	2.908(3)	168.1	
C(11)-H(11)O(1)	0.93	2.55	3.225(4)	129.8	
C(13)-H(13B)O(2A)#1	0.97	2.48	3.300(6)	142.5	
C(23)-H(23C)O(4)	0.96	2.51	3.041(4)	115.1	
C(24)-H(24A)O(4)	0.96	2.37	2.903(4)	114.9	
N(30A)-H(30A)O(4)	0.86	2.18	3.010(3)	163.5	
C(11A)-H(11A)O(1A)	0.93	2.57	3.250(4)	129.9	
C(15A)-H(15A)O(4)	0.93	2.39	3.253(3)	153.2	
C(24A)-H(24F)O(4A)	0.96	2.42	2.980(4)	117.2	
C(25A)-H(25D)O(4A)	0.96	2.45	3.007(4)	116.7	

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y+1/2,-z+3/2

Table S9. Crystal data and structure refinement for [Pd(allyl)(L3d)₂]BF₄.

Identification code	gavr35	
Empirical formula	C61 H101 B Cl6 F4 N8 O8 P2 Pd	
Formula weight	1542.34	
Temperature	293(2) К	
Wavelength	1.54186 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 10.8737(6) Å	α = 90°.
	b = 24.9640(10) Å	β = 90°.
	c = 29.062(2) Å	γ = 90°.
Volume	7888.9(8) Å ³	
Z	4	
Density (calculated)	1.299 Mg/m ³	
Absorption coefficient	4.655 mm ⁻¹	
F(000)	3224	
Crystal size	.17 x .15 x .09mm ³	
Theta range for data collection	3.519 to 56.462°.	
Index ranges	-6<=h<=11, -26<=k<=	=22, -30<=l<=30
Reflections collected	37788	
Independent reflections	8871 [R(int) = 0.1042	.]
Completeness to theta = 56.462°	91.3 %	
Refinement method	Full-matrix least-squ	ares on F ²
Data / restraints / parameters	8871/910/841	
Goodness-of-fit on F ²	0.916	
Final R indices [I>2sigma(I)]	R1 = 0.0902, wR2 = 0	.2319
R indices (all data)	R1 = 0.1806, wR2 = 0	.2625
Absolute structure parameter	-0.036(11)	
Extinction coefficient	0.00152(18)	
Largest diff. peak and hole	1.035 and -0.541 e.Å	-3

Table S10. Bond lengths [Å] and angles [°] for

 $[Pd(allyl)(L3d)_2]BF_4.$

Pd(1)-C(82)	2.06(3)	O(1)-C(12)	1.46(2)
Pd(1)-C(81)	2.11(2)	O(2)-C(18)	1.20(3)
Pd(1)-C(83)	2.19(2)	O(3)-C(24)	1.20(3)
Pd(1)-P(1A)	2.265(6)	O(4)-C(24)	1.33(3)
Pd(1)-P(1)	2.283(6)	O(4)-C(25)	1.46(3)
Cl(1)-C(90)	1.75(3)	N(1)-C(1)	1.40(3)
Cl(2)-C(90)	1.71(3)	N(1)-C(7)	1.51(3)
Cl(3)-C(90)	1.71(3)	N(2)-C(8)	1.49(3)
C(90)-H(90)	0.9800	N(2)-C(11)	1.54(3)
B(1)-F(1)	1.323(13)	N(3)-C(18)	1.39(3)
B(1)-F(2)	1.326(13)	N(3)-C(13)	1.40(3)
B(1)-F(4)	1.334(13)	N(3)-H(33)	0.8600
B(1)-F(3)	1.334(13)	N(4)-C(24)	1.34(3)
C(81)-C(82)	1.24(3)	N(4)-C(19)	1.47(3)
C(81)-H(81A)	0.9700	N(4)-H(44)	0.8600
C(81)-H(81B)	0.9700	C(1)-C(6)	1.378(13)
C(82)-C(83)	1.19(4)	C(1)-C(2)	1.385(13)
C(82)-H(82)	0.9300	C(2)-C(3)	1.387(13)
C(83)-H(83A)	0.9700	C(2)-H(2)	0.9300
C(83)-H(83B)	0.9700	C(3)-C(4)	1.397(13)
C(70)-Cl(5)	1.684(13)	C(3)-H(3)	0.9300
C(70)-Cl(6)	1.688(12)	C(4)-C(5)	1.378(13)
C(70)-Cl(4)	1.729(12)	C(4)-H(4)	0.9300
C(70)-H(70)	0.9800	C(5)-C(6)	1.375(13)
C(71)-Cl(61)	1.69(3)	C(5)-H(5)	0.9300
C(71)-Cl(51)	1.69(3)	C(6)-H(6)	0.9300
C(71)-Cl(41)	1.710(13)	C(7)-C(8)	1.49(3)
C(71)-H(71)	0.9800	C(7)-H(7A)	0.9700
P(1)-N(2)	1.618(19)	C(7)-H(7B)	0.9700
P(1)-O(1)	1.621(17)	C(8)-C(9)	1.53(4)
P(1)-N(1)	1.719(18)	C(8)-H(8)	0.9800

C(9)-C(10)	1.60(4)	C(21)-H(21C)	0.9600
C(9)-H(9A)	0.9700	C(22)-H(22A)	0.9600
С(9)-Н(9В)	0.9700	C(22)-H(22B)	0.9600
C(10)-C(11)	1.56(3)	C(22)-H(22C)	0.9600
C(10)-H(10A)	0.9700	C(23)-H(23A)	0.9600
C(10)-H(10B)	0.9700	C(23)-H(23B)	0.9600
C(11)-H(11A)	0.9700	C(23)-H(23C)	0.9600
C(11)-H(11B)	0.9700	C(25)-C(26)	1.47(4)
C(12)-C(13)	1.62(3)	C(25)-C(27)	1.56(4)
C(12)-H(12A)	0.9700	C(25)-C(28)	1.63(4)
C(12)-H(12B)	0.9700	C(26)-H(26A)	0.9600
C(13)-C(14)	1.57(3)	C(26)-H(26B)	0.9600
C(13)-H(13)	0.9800	C(26)-H(26C)	0.9600
C(14)-C(15)	1.54(3)	C(27)-H(27A)	0.9600
C(14)-C(16)	1.56(3)	С(27)-Н(27В)	0.9600
C(14)-C(17)	1.56(3)	C(27)-H(27C)	0.9600
C(15)-H(15A)	0.9600	C(28)-H(28A)	0.9600
C(15)-H(15B)	0.9600	C(28)-H(28B)	0.9600
C(15)-H(15C)	0.9600	C(28)-H(28C)	0.9600
C(16)-H(16A)	0.9600	P(1A)-O(1A)	1.609(17)
C(16)-H(16B)	0.9600	P(1A)-N(2A)	1.64(2)
C(16)-H(16C)	0.9600	P(1A)-N(1A)	1.703(18)
C(17)-H(17A)	0.9600	O(1A)-C(12A)	1.46(2)
C(17)-H(17B)	0.9600	O(2A)-C(18A)	1.25(3)
C(17)-H(17C)	0.9600	O(3A)-C(24A)	1.22(3)
C(18)-C(19)	1.53(3)	O(4A)-C(24A)	1.32(3)
C(19)-C(20)	1.55(3)	O(4A)-C(25A)	1.48(3)
C(19)-H(19)	0.9800	N(1A)-C(1A)	1.39(3)
C(20)-C(23)	1.53(3)	N(1A)-C(7A)	1.46(3)
C(20)-C(21)	1.54(3)	N(2A)-C(11A)	1.40(3)
C(20)-C(22)	1.54(3)	N(2A)-C(8A)	1.53(3)
C(21)-H(21A)	0.9600	N(3A)-C(18A)	1.33(3)
C(21)-H(21B)	0.9600	N(3A)-C(13A)	1.52(3)

N(3A)-H(33A)	0.8600	C(14A)-C(17A)	1.50(4)
N(4A)-C(24A)	1.27(3)	C(14A)-C(15A)	1.54(3)
N(4A)-C(19A)	1.45(3)	C(14A)-C(16A)	1.56(3)
N(4A)-H(44A)	0.8600	C(15A)-H(15D)	0.9600
C(1A)-C(6A)	1.387(13)	C(15A)-H(15E)	0.9600
C(1A)-C(2A)	1.394(13)	C(15A)-H(15F)	0.9600
C(2A)-C(3A)	1.378(13)	C(16A)-H(16D)	0.9600
С(2А)-Н(2А)	0.9300	C(16A)-H(16E)	0.9600
C(3A)-C(4A)	1.376(13)	C(16A)-H(16F)	0.9600
С(ЗА)-Н(ЗА)	0.9300	C(17A)-H(17D)	0.9600
C(4A)-C(5A)	1.371(13)	C(17A)-H(17E)	0.9600
C(4A)-H(4A)	0.9300	C(17A)-H(17F)	0.9600
C(5A)-C(6A)	1.387(13)	C(18A)-C(19A)	1.53(3)
С(5А)-Н(5А)	0.9300	C(19A)-C(20A)	1.55(3)
С(6А)-Н(6А)	0.9300	C(19A)-H(19A)	0.9800
C(7A)-C(8A)	1.51(3)	C(20A)-C(21A)	1.49(4)
C(7A)-H(7A1)	0.9700	C(20A)-C(22A)	1.52(3)
С(7А)-Н(7А2)	0.9700	C(20A)-C(23A)	1.61(3)
C(8A)-C(9A)	1.56(4)	C(21A)-H(21D)	0.9600
С(8А)-Н(8А)	0.9800	C(21A)-H(21E)	0.9600
C(9A)-C(10A)	1.43(3)	C(21A)-H(21F)	0.9600
C(9A)-H(9A1)	0.9700	C(22A)-H(22D)	0.9600
С(9А)-Н(9А2)	0.9700	C(22A)-H(22E)	0.9600
C(10A)-C(11A)	1.50(3)	C(22A)-H(22F)	0.9600
C(10A)-H(10C)	0.9700	C(23A)-H(23D)	0.9600
C(10A)-H(10D)	0.9700	C(23A)-H(23E)	0.9600
C(11A)-H(11C)	0.9700	C(23A)-H(23F)	0.9600
C(11A)-H(11D)	0.9700	C(25A)-C(27A)	1.42(3)
C(12A)-C(13A)	1.53(3)	C(25A)-C(26A)	1.52(4)
C(12A)-H(12C)	0.9700	C(25A)-C(28A)	1.60(3)
C(12A)-H(12D)	0.9700	C(26A)-H(26D)	0.9600
C(13A)-C(14A)	1.46(3)	С(26А)-Н(26Е)	0.9600
C(13A)-H(13A)	0.9800	C(26A)-H(26F)	0.9600

C(27A)-H(27D)	0.9600	H(81A)-C(81)-H(81B)	113.6
C(27A)-H(27E)	0.9600	C(83)-C(82)-C(81)	147(5)
C(27A)-H(27F)	0.9600	C(83)-C(82)-Pd(1)	80(2)
C(28A)-H(28D)	0.9600	C(81)-C(82)-Pd(1)	74.9(17)
C(28A)-H(28E)	0.9600	C(83)-C(82)-H(82)	106.6
C(28A)-H(28F)	0.9600	C(81)-C(82)-H(82)	106.6
C(82)-Pd(1)-C(81)	34.6(9)	Pd(1)-C(82)-H(82)	139.6
C(82)-Pd(1)-C(83)	32.3(11)	C(82)-C(83)-Pd(1)	67.7(18)
C(81)-Pd(1)-C(83)	65.5(10)	C(82)-C(83)-H(83A)	116.9
C(82)-Pd(1)-P(1A)	129.9(10)	Pd(1)-C(83)-H(83A)	116.9
C(81)-Pd(1)-P(1A)	96.5(8)	C(82)-C(83)-H(83B)	116.9
C(83)-Pd(1)-P(1A)	161.9(8)	Pd(1)-C(83)-H(83B)	116.9
C(82)-Pd(1)-P(1)	121.9(9)	H(83A)-C(83)-H(83B)	113.9
C(81)-Pd(1)-P(1)	156.1(8)	CI(5)-C(70)-CI(6)	118.9(18)
C(83)-Pd(1)-P(1)	90.6(8)	CI(5)-C(70)-CI(4)	104.7(17)
P(1A)-Pd(1)-P(1)	107.4(2)	CI(6)-C(70)-CI(4)	112.6(18)
Cl(3)-C(90)-Cl(2)	111.0(16)	CI(5)-C(70)-H(70)	106.6
Cl(3)-C(90)-Cl(1)	109.6(16)	Cl(6)-C(70)-H(70)	106.6
Cl(2)-C(90)-Cl(1)	108.7(13)	CI(4)-C(70)-H(70)	106.6
Cl(3)-C(90)-H(90)	109.1	Cl(61)-C(71)-Cl(51)	109(2)
Cl(2)-C(90)-H(90)	109.1	Cl(61)-C(71)-Cl(41)	126(3)
Cl(1)-C(90)-H(90)	109.1	CI(51)-C(71)-CI(41)	105(2)
F(1)-B(1)-F(2)	116.0(19)	Cl(61)-C(71)-H(71)	105.2
F(1)-B(1)-F(4)	114(2)	CI(51)-C(71)-H(71)	105.2
F(2)-B(1)-F(4)	109.0(19)	CI(41)-C(71)-H(71)	105.2
F(1)-B(1)-F(3)	108.4(18)	N(2)-P(1)-O(1)	109.9(9)
F(2)-B(1)-F(3)	114.8(19)	N(2)-P(1)-N(1)	91.9(9)
F(4)-B(1)-F(3)	92(2)	O(1)-P(1)-N(1)	105.3(10)
C(82)-C(81)-Pd(1)	70.5(17)	N(2)-P(1)-Pd(1)	116.4(8)
C(82)-C(81)-H(81A)	116.6	O(1)-P(1)-Pd(1)	103.3(6)
Pd(1)-C(81)-H(81A)	116.6	N(1)-P(1)-Pd(1)	129.1(6)
C(82)-C(81)-H(81B)	116.6	C(12)-O(1)-P(1)	117.7(14)
Pd(1)-C(81)-H(81B)	116.6	C(24)-O(4)-C(25)	120(2)

C(1)-N(1)-C(7)	122.6(17)	C(8)-C(7)-H(7B)	111.5
C(1)-N(1)-P(1)	123.9(14)	N(1)-C(7)-H(7B)	111.5
C(7)-N(1)-P(1)	112.3(15)	H(7A)-C(7)-H(7B)	109.3
C(8)-N(2)-C(11)	114.4(19)	N(2)-C(8)-C(7)	107.7(16)
C(8)-N(2)-P(1)	114.4(16)	N(2)-C(8)-C(9)	104(2)
C(11)-N(2)-P(1)	128.5(14)	C(7)-C(8)-C(9)	112(2)
C(18)-N(3)-C(13)	123.1(18)	N(2)-C(8)-H(8)	110.8
C(18)-N(3)-H(33)	118.4	C(7)-C(8)-H(8)	110.8
C(13)-N(3)-H(33)	118.4	C(9)-C(8)-H(8)	110.8
C(24)-N(4)-C(19)	124(2)	C(8)-C(9)-C(10)	102(2)
C(24)-N(4)-H(44)	118.0	C(8)-C(9)-H(9A)	111.4
C(19)-N(4)-H(44)	118.0	C(10)-C(9)-H(9A)	111.4
C(6)-C(1)-C(2)	114(2)	С(8)-С(9)-Н(9В)	111.4
C(6)-C(1)-N(1)	122(2)	C(10)-C(9)-H(9B)	111.4
C(2)-C(1)-N(1)	123.9(17)	H(9A)-C(9)-H(9B)	109.3
C(1)-C(2)-C(3)	124(2)	C(11)-C(10)-C(9)	106(2)
C(1)-C(2)-H(2)	117.8	C(11)-C(10)-H(10A)	110.5
C(3)-C(2)-H(2)	117.8	C(9)-C(10)-H(10A)	110.5
C(2)-C(3)-C(4)	120(2)	C(11)-C(10)-H(10B)	110.5
C(2)-C(3)-H(3)	120.2	C(9)-C(10)-H(10B)	110.5
C(4)-C(3)-H(3)	120.2	H(10A)-C(10)-H(10B)	108.7
C(5)-C(4)-C(3)	116(2)	N(2)-C(11)-C(10)	99.7(19)
C(5)-C(4)-H(4)	121.9	N(2)-C(11)-H(11A)	111.8
C(3)-C(4)-H(4)	121.9	C(10)-C(11)-H(11A)	111.8
C(6)-C(5)-C(4)	122(2)	N(2)-C(11)-H(11B)	111.8
C(6)-C(5)-H(5)	118.8	C(10)-C(11)-H(11B)	111.8
C(4)-C(5)-H(5)	118.8	H(11A)-C(11)-H(11B)	109.6
C(5)-C(6)-C(1)	123(2)	O(1)-C(12)-C(13)	99.1(16)
C(5)-C(6)-H(6)	118.6	O(1)-C(12)-H(12A)	111.9
C(1)-C(6)-H(6)	118.6	C(13)-C(12)-H(12A)	111.9
C(8)-C(7)-N(1)	101.6(18)	O(1)-C(12)-H(12B)	111.9
C(8)-C(7)-H(7A)	111.5	C(13)-C(12)-H(12B)	111.9
N(1)-C(7)-H(7A)	111.5	H(12A)-C(12)-H(12B)	109.6

N(3)-C(13)-C(14)	114.5(17)	N(4)-C(19)-C(18)	114.8(18)
N(3)-C(13)-C(12)	105.7(19)	N(4)-C(19)-C(20)	112.6(19)
C(14)-C(13)-C(12)	112.0(19)	C(18)-C(19)-C(20)	115(2)
N(3)-C(13)-H(13)	108.2	N(4)-C(19)-H(19)	104.3
C(14)-C(13)-H(13)	108.2	C(18)-C(19)-H(19)	104.3
C(12)-C(13)-H(13)	108.2	C(20)-C(19)-H(19)	104.3
C(15)-C(14)-C(16)	109(2)	C(23)-C(20)-C(21)	109.3(19)
C(15)-C(14)-C(17)	112(2)	C(23)-C(20)-C(22)	109(2)
C(16)-C(14)-C(17)	109(2)	C(21)-C(20)-C(22)	110.5(19)
C(15)-C(14)-C(13)	108(2)	C(23)-C(20)-C(19)	109.7(18)
C(16)-C(14)-C(13)	109(2)	C(21)-C(20)-C(19)	111(2)
C(17)-C(14)-C(13)	110(2)	C(22)-C(20)-C(19)	107.1(19)
C(14)-C(15)-H(15A)	109.5	C(20)-C(21)-H(21A)	109.5
C(14)-C(15)-H(15B)	109.5	C(20)-C(21)-H(21B)	109.5
H(15A)-C(15)-H(15B)	109.5	H(21A)-C(21)-H(21B)	109.5
C(14)-C(15)-H(15C)	109.5	C(20)-C(21)-H(21C)	109.5
H(15A)-C(15)-H(15C)	109.5	H(21A)-C(21)-H(21C)	109.5
H(15B)-C(15)-H(15C)	109.5	H(21B)-C(21)-H(21C)	109.5
C(14)-C(16)-H(16A)	109.5	C(20)-C(22)-H(22A)	109.5
C(14)-C(16)-H(16B)	109.5	C(20)-C(22)-H(22B)	109.5
H(16A)-C(16)-H(16B)	109.5	H(22A)-C(22)-H(22B)	109.5
C(14)-C(16)-H(16C)	109.5	C(20)-C(22)-H(22C)	109.5
H(16A)-C(16)-H(16C)	109.5	H(22A)-C(22)-H(22C)	109.5
H(16B)-C(16)-H(16C)	109.5	H(22B)-C(22)-H(22C)	109.5
C(14)-C(17)-H(17A)	109.5	C(20)-C(23)-H(23A)	109.5
C(14)-C(17)-H(17B)	109.5	C(20)-C(23)-H(23B)	109.5
H(17A)-C(17)-H(17B)	109.5	H(23A)-C(23)-H(23B)	109.5
C(14)-C(17)-H(17C)	109.5	C(20)-C(23)-H(23C)	109.5
H(17A)-C(17)-H(17C)	109.5	H(23A)-C(23)-H(23C)	109.5
H(17B)-C(17)-H(17C)	109.5	H(23B)-C(23)-H(23C)	109.5
O(2)-C(18)-N(3)	124(2)	O(3)-C(24)-O(4)	126(3)
O(2)-C(18)-C(19)	119(2)	O(3)-C(24)-N(4)	125(3)
N(3)-C(18)-C(19)	116(2)	O(4)-C(24)-N(4)	108(3)

O(4)-C(25)-C(26)	115(2)	C(1A)-N(1A)-P(1A)	123.7(15)
O(4)-C(25)-C(27)	102(3)	C(7A)-N(1A)-P(1A)	111.7(14)
C(26)-C(25)-C(27)	113(3)	C(11A)-N(2A)-C(8A)	110.4(19)
O(4)-C(25)-C(28)	106(2)	C(11A)-N(2A)-P(1A)	128.0(16)
C(26)-C(25)-C(28)	107(3)	C(8A)-N(2A)-P(1A)	114.4(15)
C(27)-C(25)-C(28)	112(2)	C(18A)-N(3A)-C(13A)	124(2)
C(25)-C(26)-H(26A)	109.5	C(18A)-N(3A)-H(33A)	117.9
С(25)-С(26)-Н(26В)	109.5	C(13A)-N(3A)-H(33A)	117.9
H(26A)-C(26)-H(26B)	109.5	C(24A)-N(4A)-C(19A)	123(2)
C(25)-C(26)-H(26C)	109.5	C(24A)-N(4A)-H(44A)	118.6
H(26A)-C(26)-H(26C)	109.5	C(19A)-N(4A)-H(44A)	118.6
H(26B)-C(26)-H(26C)	109.5	N(1A)-C(1A)-C(6A)	121.5(18)
C(25)-C(27)-H(27A)	109.5	N(1A)-C(1A)-C(2A)	119(2)
С(25)-С(27)-Н(27В)	109.5	C(6A)-C(1A)-C(2A)	120(2)
H(27A)-C(27)-H(27B)	109.5	C(3A)-C(2A)-C(1A)	116(2)
C(25)-C(27)-H(27C)	109.5	C(3A)-C(2A)-H(2A)	121.8
H(27A)-C(27)-H(27C)	109.5	C(1A)-C(2A)-H(2A)	121.8
H(27B)-C(27)-H(27C)	109.5	C(4A)-C(3A)-C(2A)	125(2)
C(25)-C(28)-H(28A)	109.5	C(4A)-C(3A)-H(3A)	117.4
C(25)-C(28)-H(28B)	109.5	C(2A)-C(3A)-H(3A)	117.4
H(28A)-C(28)-H(28B)	109.5	C(5A)-C(4A)-C(3A)	118(3)
C(25)-C(28)-H(28C)	109.5	C(5A)-C(4A)-H(4A)	121.2
H(28A)-C(28)-H(28C)	109.5	C(3A)-C(4A)-H(4A)	121.2
H(28B)-C(28)-H(28C)	109.5	C(4A)-C(5A)-C(6A)	120(3)
O(1A)-P(1A)-N(2A)	109.6(9)	C(4A)-C(5A)-H(5A)	120.2
O(1A)-P(1A)-N(1A)	105.2(10)	C(6A)-C(5A)-H(5A)	120.2
N(2A)-P(1A)-N(1A)	94.1(9)	C(1A)-C(6A)-C(5A)	122(2)
O(1A)-P(1A)-Pd(1)	105.0(5)	C(1A)-C(6A)-H(6A)	119.2
N(2A)-P(1A)-Pd(1)	117.1(8)	C(5A)-C(6A)-H(6A)	119.2
N(1A)-P(1A)-Pd(1)	124.9(6)	N(1A)-C(7A)-C(8A)	109.5(18)
C(12A)-O(1A)-P(1A)	121.0(13)	N(1A)-C(7A)-H(7A1)	109.8
C(24A)-O(4A)-C(25A)	125(2)	C(8A)-C(7A)-H(7A1)	109.8
C(1A)-N(1A)-C(7A)	124.6(17)	N(1A)-C(7A)-H(7A2)	109.8

C(8A)-C(7A)-H(7A2)	109.8	C(14A)-C(13A)-C(12A)	118(2)
H(7A1)-C(7A)-H(7A2)	108.2	N(3A)-C(13A)-C(12A)	105(2)
C(7A)-C(8A)-N(2A)	104.0(16)	C(14A)-C(13A)-H(13A)	106.9
C(7A)-C(8A)-C(9A)	117(2)	N(3A)-C(13A)-H(13A)	106.9
N(2A)-C(8A)-C(9A)	104(2)	C(12A)-C(13A)-H(13A)	106.9
C(7A)-C(8A)-H(8A)	110.5	C(13A)-C(14A)-C(17A)	111(2)
N(2A)-C(8A)-H(8A)	110.5	C(13A)-C(14A)-C(15A)	110(2)
С(9А)-С(8А)-Н(8А)	110.5	C(17A)-C(14A)-C(15A)	106(2)
C(10A)-C(9A)-C(8A)	106(2)	C(13A)-C(14A)-C(16A)	112(3)
C(10A)-C(9A)-H(9A1)	110.5	C(17A)-C(14A)-C(16A)	111(2)
C(8A)-C(9A)-H(9A1)	110.5	C(15A)-C(14A)-C(16A)	106(2)
C(10A)-C(9A)-H(9A2)	110.5	C(14A)-C(15A)-H(15D)	109.5
C(8A)-C(9A)-H(9A2)	110.5	C(14A)-C(15A)-H(15E)	109.5
H(9A1)-C(9A)-H(9A2)	108.7	H(15D)-C(15A)-H(15E)	109.5
C(9A)-C(10A)-C(11A)	111(3)	C(14A)-C(15A)-H(15F)	109.5
C(9A)-C(10A)-H(10C)	109.5	H(15D)-C(15A)-H(15F)	109.5
C(11A)-C(10A)-H(10C)	109.5	H(15E)-C(15A)-H(15F)	109.5
C(9A)-C(10A)-H(10D)	109.5	C(14A)-C(16A)-H(16D)	109.5
C(11A)-C(10A)-H(10D)	109.5	C(14A)-C(16A)-H(16E)	109.5
H(10C)-C(10A)-H(10D)	108.0	H(16D)-C(16A)-H(16E)	109.5
N(2A)-C(11A)-C(10A)	106(2)	C(14A)-C(16A)-H(16F)	109.5
N(2A)-C(11A)-H(11C)	110.5	H(16D)-C(16A)-H(16F)	109.5
C(10A)-C(11A)-H(11C)	110.5	H(16E)-C(16A)-H(16F)	109.5
N(2A)-C(11A)-H(11D)	110.5	C(14A)-C(17A)-H(17D)	109.5
C(10A)-C(11A)-H(11D)	110.5	C(14A)-C(17A)-H(17E)	109.5
H(11C)-C(11A)-H(11D)	108.6	H(17D)-C(17A)-H(17E)	109.5
O(1A)-C(12A)-C(13A)	109.8(17)	C(14A)-C(17A)-H(17F)	109.5
O(1A)-C(12A)-H(12C)	109.7	H(17D)-C(17A)-H(17F)	109.5
C(13A)-C(12A)-H(12C)	109.7	H(17E)-C(17A)-H(17F)	109.5
O(1A)-C(12A)-H(12D)	109.7	O(2A)-C(18A)-N(3A)	122(3)
C(13A)-C(12A)-H(12D)	109.7	O(2A)-C(18A)-C(19A)	119(2)
H(12C)-C(12A)-H(12D)	108.2	N(3A)-C(18A)-C(19A)	119(2)
C(14A)-C(13A)-N(3A)	112.4(18)	N(4A)-C(19A)-C(18A)	111(2)

C(20A)-C(23A)-H(23F)

H(23D)-C(23A)-H(23F)

H(23E)-C(23A)-H(23F)

O(3A)-C(24A)-N(4A)

O(3A)-C(24A)-O(4A)

N(4A)-C(24A)-O(4A)

C(27A)-C(25A)-O(4A)

109.5

109.5

109.5

128(3)

120(3)

112(3)

104(2)

N(AA) - C(19A) - C(20A)	116(2)	$C(27\Delta)_C(25\Lambda)_C(26\Lambda)$	112(2)
	110(2)		112(3)
C(18A)-C(19A)-C(20A)	114(2)	O(4A)-C(25A)-C(26A)	108(2)
N(4A)-C(19A)-H(19A)	104.5	C(27A)-C(25A)-C(28A)	112(3)
C(18A)-C(19A)-H(19A)	104.5	O(4A)-C(25A)-C(28A)	109(3)
C(20A)-C(19A)-H(19A)	104.5	C(26A)-C(25A)-C(28A)	111(2)
C(21A)-C(20A)-C(22A)	114(3)	C(25A)-C(26A)-H(26D)	109.5
C(21A)-C(20A)-C(19A)	111(2)	C(25A)-C(26A)-H(26E)	109.5
C(22A)-C(20A)-C(19A)	107(2)	H(26D)-C(26A)-H(26E)	109.5
C(21A)-C(20A)-C(23A)	111(3)	C(25A)-C(26A)-H(26F)	109.5
C(22A)-C(20A)-C(23A)	107(2)	H(26D)-C(26A)-H(26F)	109.5
C(19A)-C(20A)-C(23A)	107(2)	H(26E)-C(26A)-H(26F)	109.5
C(20A)-C(21A)-H(21D)	109.5	C(25A)-C(27A)-H(27D)	109.5
C(20A)-C(21A)-H(21E)	109.5	C(25A)-C(27A)-H(27E)	109.5
H(21D)-C(21A)-H(21E)	109.5	H(27D)-C(27A)-H(27E)	109.5
C(20A)-C(21A)-H(21F)	109.5	C(25A)-C(27A)-H(27F)	109.5
H(21D)-C(21A)-H(21F)	109.5	H(27D)-C(27A)-H(27F)	109.5
H(21E)-C(21A)-H(21F)	109.5	H(27E)-C(27A)-H(27F)	109.5
C(20A)-C(22A)-H(22D)	109.5	C(25A)-C(28A)-H(28D)	109.5
C(20A)-C(22A)-H(22E)	109.5	C(25A)-C(28A)-H(28E)	109.5
H(22D)-C(22A)-H(22E)	109.5	H(28D)-C(28A)-H(28E)	109.5
C(20A)-C(22A)-H(22F)	109.5	C(25A)-C(28A)-H(28F)	109.5
H(22D)-C(22A)-H(22F)	109.5	H(28D)-C(28A)-H(28F)	109.5
H(22E)-C(22A)-H(22F)	109.5	H(28E)-C(28A)-H(28F)	109.5
C(20A)-C(23A)-H(23D)	109.5		
С(20А)-С(23А)-Н(23Е)	109.5		
H(23D)-C(23A)-H(23E)	109.5		

 Table S11.
 Torsion angles [°] for [Pd(allyl)(L3d)₂]BF₄.

Pd(1)-C(81)-C(82)-C(83)	42(7)	P(1)-N(2)-C(8)-C(7)	-26(3)
C(81)-C(82)-C(83)-Pd(1)	-41(7)	C(11)-N(2)-C(8)-C(9)	17(3)
N(2)-P(1)-O(1)-C(12)	50.9(17)	P(1)-N(2)-C(8)-C(9)	-145.6(18)
N(1)-P(1)-O(1)-C(12)	-46.9(16)	N(1)-C(7)-C(8)-N(2)	34(3)
Pd(1)-P(1)-O(1)-C(12)	175.7(13)	N(1)-C(7)-C(8)-C(9)	148(2)
N(2)-P(1)-N(1)-C(1)	-175.4(19)	N(2)-C(8)-C(9)-C(10)	-32(3)
O(1)-P(1)-N(1)-C(1)	-64.2(19)	C(7)-C(8)-C(9)-C(10)	-149(2)
Pd(1)-P(1)-N(1)-C(1)	58(2)	C(8)-C(9)-C(10)-C(11)	38(3)
N(2)-P(1)-N(1)-C(7)	16.8(17)	C(8)-N(2)-C(11)-C(10)	6(3)
O(1)-P(1)-N(1)-C(7)	128.1(15)	P(1)-N(2)-C(11)-C(10)	166(2)
Pd(1)-P(1)-N(1)-C(7)	-110.1(14)	C(9)-C(10)-C(11)-N(2)	-26(3)
O(1)-P(1)-N(2)-C(8)	-101.7(18)	P(1)-O(1)-C(12)-C(13)	-169.0(12)
N(1)-P(1)-N(2)-C(8)	5.4(19)	C(18)-N(3)-C(13)-C(14)	113(2)
Pd(1)-P(1)-N(2)-C(8)	141.5(16)	C(18)-N(3)-C(13)-C(12)	-124(2)
O(1)-P(1)-N(2)-C(11)	98(2)	O(1)-C(12)-C(13)-N(3)	72.2(18)
N(1)-P(1)-N(2)-C(11)	-155(2)	O(1)-C(12)-C(13)-C(14)	-162.6(16)
Pd(1)-P(1)-N(2)-C(11)	-19(2)	N(3)-C(13)-C(14)-C(15)	-59(3)
C(7)-N(1)-C(1)-C(6)	2(3)	C(12)-C(13)-C(14)-C(15)	-179.0(19)
P(1)-N(1)-C(1)-C(6)	-165.0(19)	N(3)-C(13)-C(14)-C(16)	59(3)
C(7)-N(1)-C(1)-C(2)	-173(2)	C(12)-C(13)-C(14)-C(16)	-61(3)
P(1)-N(1)-C(1)-C(2)	21(3)	N(3)-C(13)-C(14)-C(17)	179(2)
C(6)-C(1)-C(2)-C(3)	2(4)	C(12)-C(13)-C(14)-C(17)	59(2)
N(1)-C(1)-C(2)-C(3)	177(2)	C(13)-N(3)-C(18)-O(2)	-3(4)
C(1)-C(2)-C(3)-C(4)	-5(4)	C(13)-N(3)-C(18)-C(19)	174(2)
C(2)-C(3)-C(4)-C(5)	6(4)	C(24)-N(4)-C(19)-C(18)	-127(2)
C(3)-C(4)-C(5)-C(6)	-5(4)	C(24)-N(4)-C(19)-C(20)	99(3)
C(4)-C(5)-C(6)-C(1)	2(4)	O(2)-C(18)-C(19)-N(4)	148(2)
C(2)-C(1)-C(6)-C(5)	0(4)	N(3)-C(18)-C(19)-N(4)	-29(3)
N(1)-C(1)-C(6)-C(5)	-175(2)	O(2)-C(18)-C(19)-C(20)	-79(3)
C(1)-N(1)-C(7)-C(8)	160(2)	N(3)-C(18)-C(19)-C(20)	104(2)
P(1)-N(1)-C(7)-C(8)	-32(2)	N(4)-C(19)-C(20)-C(23)	81(3)
C(11)-N(2)-C(8)-C(7)	137(2)	C(18)-C(19)-C(20)-C(23)	-54(3)

N(4)-C(19)-C(20)-C(21)	-40(3)	C(2A)-C(3A)-C(4A)-C(5A)	-1(5)
C(18)-C(19)-C(20)-C(21)	-174.2(19)	C(3A)-C(4A)-C(5A)-C(6A)	-1(5)
N(4)-C(19)-C(20)-C(22)	-161(2)	N(1A)-C(1A)-C(6A)-C(5A)	-179(2)
C(18)-C(19)-C(20)-C(22)	65(3)	C(2A)-C(1A)-C(6A)-C(5A)	-3(4)
C(25)-O(4)-C(24)-O(3)	-15(4)	C(4A)-C(5A)-C(6A)-C(1A)	3(5)
C(25)-O(4)-C(24)-N(4)	170(2)	C(1A)-N(1A)-C(7A)-C(8A)	154(2)
C(19)-N(4)-C(24)-O(3)	7(4)	P(1A)-N(1A)-C(7A)-C(8A)	-24(2)
C(19)-N(4)-C(24)-O(4)	-178.6(18)	N(1A)-C(7A)-C(8A)-N(2A)	25(3)
C(24)-O(4)-C(25)-C(26)	60(3)	N(1A)-C(7A)-C(8A)-C(9A)	139(2)
C(24)-O(4)-C(25)-C(27)	-176(2)	C(11A)-N(2A)-C(8A)-C(7A)	134(2)
C(24)-O(4)-C(25)-C(28)	-59(3)	P(1A)-N(2A)-C(8A)-C(7A)	-18(2)
N(2A)-P(1A)-O(1A)-C(12A)	44.3(19)	C(11A)-N(2A)-C(8A)-C(9A)	11(2)
N(1A)-P(1A)-O(1A)-C(12A)	-55.9(18)	P(1A)-N(2A)-C(8A)-C(9A)	-141.2(17)
Pd(1)-P(1A)-O(1A)-C(12A)	170.8(15)	C(7A)-C(8A)-C(9A)-C(10A)	-116(2)
O(1A)-P(1A)-N(1A)-C(1A)	-56(2)	N(2A)-C(8A)-C(9A)-C(10A)	-2(3)
N(2A)-P(1A)-N(1A)-C(1A)	-167.2(19)	C(8A)-C(9A)-C(10A)-C(11A)	-8(3)
Pd(1)-P(1A)-N(1A)-C(1A)	65(2)	C(8A)-N(2A)-C(11A)-C(10A)	-16(3)
O(1A)-P(1A)-N(1A)-C(7A)	122.7(16)	P(1A)-N(2A)-C(11A)-C(10A)	132(2)
N(2A)-P(1A)-N(1A)-C(7A)	11.1(17)	C(9A)-C(10A)-C(11A)-N(2A)	15(3)
Pd(1)-P(1A)-N(1A)-C(7A)	-116.2(14)	P(1A)-O(1A)-C(12A)-C(13A)	-159.3(16)
O(1A)-P(1A)-N(2A)-C(11A)	110(2)	C(18A)-N(3A)-C(13A)-C(14A)	123(3)
N(1A)-P(1A)-N(2A)-C(11A)	-142(2)	C(18A)-N(3A)-C(13A)-C(12A)	-107(2)
Pd(1)-P(1A)-N(2A)-C(11A)	-9(2)	O(1A)-C(12A)-C(13A)-C(14A)	-164(2)
O(1A)-P(1A)-N(2A)-C(8A)	-102.8(17)	O(1A)-C(12A)-C(13A)-N(3A)	69(2)
N(1A)-P(1A)-N(2A)-C(8A)	5.0(18)	N(3A)-C(13A)-C(14A)-C(17A)	-55(3)
Pd(1)-P(1A)-N(2A)-C(8A)	137.9(14)	C(12A)-C(13A)-C(14A)-C(17A)	-178(2)
C(7A)-N(1A)-C(1A)-C(6A)	-175(2)	N(3A)-C(13A)-C(14A)-C(15A)	-172(2)
P(1A)-N(1A)-C(1A)-C(6A)	3(3)	C(12A)-C(13A)-C(14A)-C(15A)	65(3)
C(7A)-N(1A)-C(1A)-C(2A)	9(3)	N(3A)-C(13A)-C(14A)-C(16A)	70(3)
P(1A)-N(1A)-C(1A)-C(2A)	-172.7(18)	C(12A)-C(13A)-C(14A)-C(16A)	-53(3)
N(1A)-C(1A)-C(2A)-C(3A)	177(2)	C(13A)-N(3A)-C(18A)-O(2A)	-12(4)
C(6A)-C(1A)-C(2A)-C(3A)	1(4)	C(13A)-N(3A)-C(18A)-C(19A)	176(2)
C(1A)-C(2A)-C(3A)-C(4A)	1(4)	C(24A)-N(4A)-C(19A)-C(18A)	-127(3)

C(24A)-N(4A)-C(19A)-C(20A)	100(3)
O(2A)-C(18A)-C(19A)-N(4A)	149(2)
N(3A)-C(18A)-C(19A)-N(4A)	-39(3)
O(2A)-C(18A)-C(19A)-C(20A)	-77(3)
N(3A)-C(18A)-C(19A)-C(20A)	96(3)
N(4A)-C(19A)-C(20A)-C(21A)	175(3)
C(18A)-C(19A)-C(20A)-C(21A)	43(3)
N(4A)-C(19A)-C(20A)-C(22A)	-60(3)
C(18A)-C(19A)-C(20A)-C(22A)	168(2)
N(4A)-C(19A)-C(20A)-C(23A)	54(3)
C(18A)-C(19A)-C(20A)-C(23A)	-78(3)
C(19A)-N(4A)-C(24A)-O(3A)	11(4)
C(19A)-N(4A)-C(24A)-O(4A)	-170.5(19)
C(25A)-O(4A)-C(24A)-O(3A)	-11(4)
C(25A)-O(4A)-C(24A)-N(4A)	170(2)
C(24A)-O(4A)-C(25A)-C(27A)	-168(3)
C(24A)-O(4A)-C(25A)-C(26A)	73(3)
C(24A)-O(4A)-C(25A)-C(28A)	-48(3)

Table S12. Crystal data for L1d.

empirical formula	C ₂₁ H ₃₄ N ₃ O ₃ PS
M _r	439.54
crystal system	Triclinic
space group	P 1
diffractometer	Stoe Stadi-P
wavelength, Å	1.54059
unit cell dimensions	
<i>a,</i> Å	6.2154(9)
<i>b,</i> Å	9.2338(12)
<i>c,</i> Å	11.1198(15)
α, °	79.356(14)
<i>β</i> , °	86.919(17)
γ, ⁰	70.801(12)
volume, Å ³	592.30(14)
Z	1
D_x (Mg m ⁻³)	1.232
μ, mm⁻¹	2.058
$2 \theta_{min}$ - $2 \theta_{max}$, $\Delta 2 \theta$ (°)	7.00 – 70.09, 0.01
no. params/restraints	141/119
R _p , R _{wp} , R _{exp}	0.0315, 0.0415, 0.0275

Figure S56. The final Rietveld plot for **L1d**. The experimental diffraction profile is indicated by black dots. The calculated diffraction profile is shown as the upper red line, the difference profile is shown as the bottom blue line, and the vertical green bars correspond to the calculated positions of the Bragg peaks.

Figure S57. Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of (*E*)-1,3-diphenylallyl ethyl carbonate (**7**) with dimethyl malonate (entry 2 in Table 1) and for a racemic mixture of (*E*)-dimethyl 2-(1,3-diphenylallyl)malonate (**8a**) (in the frame).

Figure S58. Chiral HPLC trace for the Pd-catalyzed asymmetric allylic amination of (E)-1,3-diphenylallyl ethyl carbonate (7) with pyrrolidine (entry 2 in Table 2) and for a racemic mixture of (E)-1-(1,3-diphenylallyl)pyrrolidine (8b) (in the frame).

Figure S59. Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of cinnamyl acetate (**9**) with ethyl 2-oxocyclohexane-1-carboxylate (**10**) (entry 9 in Table 3) and for a racemic mixture of ethyl 1-cinnamyl-2-oxocyclohexanecarboxylate (**11**) (in the frame).

Figure S60. Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of cinnamyl acetate (**9**) with ethyl 2-oxocyclopentane-1-carboxylate (**12**) (entry 8 in Table 4) and for a racemic mixture of ethyl 1-cinnamyl-2-oxocyclopentanecarboxylate (**13**) (in the frame).
STUDIES OF INTRAMOLECULAR ROTATION IN N-BOC-PROLINE DERIVATIVES

Due to the hindered rotations at room temperature about the C–N bonds of the carboxamides, two groups of signals corresponding to the *cis* and *trans* orientations of the two t-butoxycarbonylgroups with respect to the pyrrolydine ring of proline are observed for precursor **4** and both ligands **L2** and **L4** (Figure S61). (*Cis* and *trans* orientations correspond to the *Z* and *E* isomers respectively, when we consider the double bonds between nitrogen and carbon atoms of the Boc-amide-group.) Heating or freezing of the solutions in toluene-d8 (or CDCl₃) allows determining the coalescence temperature for the signals of the *tert*-butyl groups protons for precursor **4** or ³¹P signals for both ligands **L2** and **L4**. The coalescence temperatures are represented in **Table S13**. It is possible to calculate ΔG # at coalescence temperature for the intramolecular rotation using Eiring equation. The calculated values are represented in **Table S13**. We can find both salvation and substitution contributes the intermolecular rotation barriers, as the attachment of the phosphorous group to the precursor **4** led to increase the rotation barrier and the changing the solvent from CDCl₃ to toluene-d8 also lead to obstruction of the rotation.

To test the assumption of the restricted intramolecular rotation in Boc-proline moiety we decided as a first step to perform DFT calculations of potential energy surface (PES) along the O=C-N-C(H) torsion angle using first-principles DFT (GGA PBE).^[1, 2] The intercept curve (**Figure S61**) shows two minima corresponding two rotamers of **4** and **L4** and two maxima between them. The relaxed geometries of **4** and **L4** were completely optimized for the gas phase conditions.^[3] The precision analysis of PES specifies the relative energies of minima and transition states at the tops of the intercept curve (**Table S13**).

	4		L4		L2	
	deg	ΔΕ,	deg	ΔΕ,	deg	ΔΕ,
		kcal/mol		kcal/mol		kcal/mol
Minima	11.27	0	11.35	0	8.43	0
	196.86	3.38	197.12	3.24	189.46	0.13
Transition states	115.03	16.42	114.94	16.44	115.06	15.70
	298.92	15.91	298.31	15.71	298.21	16.60
Energy of intermolecular rotation	13.0		15.6		18.4	
barrier from NMR, kcal/mol						
Coalescence temperatures	286		341		403	

 Table S13. Calculated and experimental parameters of intramolecular rotation around the Boc-Pro amide bond in 4, L2 and L4

Figure S61. Intramolecular rotation around the Boc-Pro amide bond in in 4, L2 and L4.

- 1. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396.
- 3. D. N. Laikov, Chem. Phys. Lett., 2005, 416, 116.