

Fig. S1: Rietveld-Refinement of Na₅Eu(WO₄)₄ prepared by flux synthesis; further details can be found in Table S3.

Fig. S2: Rietveld refinements of Na₅Eu(WO₄)₄ prepared by standard solid state reaction at 600°C (A1) (left) and 700°C (A2) (right): the refinements yielded in R_{wp} of 2.24% and 4.23%, R_{Bragg} of 1.29% and 2.91% for Na₅Eu(WO₄)₄ and 0.72% and 1.77% for NaEu(WO₄)₂, respectively.

Table S1. Crystal data and structure refinements of NaEu(WO ₄) ₂ and Na ₅ M(WO ₄) ₄ (M = Ce, Pr, Nd, Sm, Eu) determined from single-crystal data ^a						
	NaEu(WO ₄) ₂	Na₅Ce(WO₄)₄	Na₅Pr(WO₄)₄	Na₅Nd(WO₄)₄	Na₅Sm(WO₄)₄	Na₅Eu(WO₄)₄
CSD-No.	1986866	1986870	1986859	1986871	1986862	1986865
<i>M</i> / g mol ⁻¹	670.65	1246.47	1247.26	1250.59	1256.70	1258.31
Crystal size / mm ³	0.04 × 0.04 × 0.03	0.07 × 0.03 × 0.03	0.04 × 0.04 × 0.04	0.04 × 0.04 × 0.03	0.04 × 0.04 × 0.02	0.10 × 0.06 × 0.03
Temperature / K			30	00(3)		
Space group			14 ₁ /a	(No. 88)		
a / pm	526.24(1)	1158.57(3)	1157.65(2)	1155.89(4)	1151.61(4)	1149.98(4)
<i>c</i> / pm	1140.78(3)	1152.47(4)	1147.97(2)	1147.22(4)	1142.31(4)	1140.61(4)
Volume / 10 ⁶ pm ³	316.07(3)	1546.94(10)	1538.46(6)	1532.78(12)	1514.94(12)	1508.40(12)
Ζ	2			4		
$ ho_{ m calcd}$ / g cm $^{-3}$	7.05	5.35	5.39	5.42	5.51	5.54
Absorption coefficient μ / mm ⁻¹	46.2	32.7	33.1	33.5	34.3	34.7
F(000) / e	572	2148	2152	2156	2164	2168
Radiation; wavelength λ / Å			MoKa	; 0.71073		
Diffractometer			Bruker	D8 Venture		
Absorption correction			Mul	ti-scan		
Transmission (min; max)	0.6338; 0.7503	0.6678; 0.7478	0.6011; 0.7488	0.5281; 0.7472	0.5921; 0.7479	0.6001; 0.7483
Index range <i>h</i> <i>k</i> <i>l</i>	-9/9 -9/9 -21/21	-14/16 -15/16 -15/15	-19/21 -21/21 -20/20	-17/16 -16/17 -17/17	-18/19 -19/19 -19/19	-20/20 -15/20 -20/20
heta range / deg	4.265–41.863	2.493–29.415	2.499–40.487	2.501–33.497	2.511–36.979	2.515–39.996
Reflections collected	21433	9235	26586	13470	18168	16901
Independent reflections	546	1062	2455	1504	1937	2337
R _{int}	0.0284	0.0325	0.0504	0.056	0.0403	0.0406
Obs. reflections ($I > 2 \sigma(I)$)	472	1008	2191	1277	1722	2025
Refined parameters	16	59	60	60	60	60
R ₁ (all data)	0.018	0.0321	0.024	0.0322	0.023	0.0258
wR₂ (all data)	0.034	0.0719	0.0298	0.0362	0.0321	0.0356
GooF	1.12	1.342	1.076	1.038	1.038	1.026
Residual electron density (max; min) / e^{-} Å ⁻³	2.08; –1.51	2.16; –2.13	1.16; –1.22	1.08; –1.18	1.56; –1.10	1.41; –1.18

^a The respective standard deviations are given in parentheses.

Table S2. Crystal data and structure refinements of Na ₅ <i>M</i> (WO ₄) ₄ (M = Gd, Tb, Ho, Tm, Yb, Bi) determined from single-crystal data ^a						
	Na₅Gd(WO₄)₄	Na ₅ Tb(WO ₄) ₄	Na₅Ho(WO₄)₄	Na₅Tm(WO₄)₄	Na ₅ Yb(WO ₄) ₄	Na₅Bi(WO₄)₄
CSD-No.	1986868	1986861	1986869	1986863	1986867	1986858
<i>M</i> / g mol ⁻¹	1263.60	1265.27	1271.28	1275.28	1279.39	1315.33
Crystal size / mm ³	0.06 × 0.04 × 0.04	$0.08 \times 0.04 \times 0.03$	$0.06\times0.06\times0.04$	$0.08\times0.05\times0.04$	$0.05\times0.05\times0.04$	$0.08 \times 0.04 \times 0.03$
Temperature / K	300(3)					
Space group			I4₁/a (No. 88)		
a / pm	1147.96(4)	1146.90(5)	1143.99(4)	1139.99(6)	1139.65(10)	1154.33(4)
<i>c</i> / pm	1137.79(4)	1137.91(6)	1134.69(5)	1129.85(6)	1129.32(11)	1141.36(4)
Volume / 10 ⁶ pm ³	1499.39(12)	1496.78(15)	1484.98(12)	1468.33(17)	1466.8(3)	1520.84(12)
Z				4		
$ ho_{ m calcd}$ / g cm ⁻³	5.60	5.61	5.69	5.77	5.79	5.75
Absorption coefficient μ / mm ⁻¹	35.2	35.5	36.4	37.4	37.8	41.9
F(000) / e	2172	2176	2184	2192	2196	2248
Radiation; wavelength λ / Å			ΜοΚα;	0.71073		
Diffractometer			Bruker D	8 Venture		
Absorption correction			Multi	-scan		
Transmission (min; max)	0.5701; 0.7492	0.5804; 0.7479	0.4945; 0.7489	0.5591; 0.7506	0.4954; 0.7477	0.6549; 0.7459
Index range <i>h</i> <i>k</i> <i>l</i>	-20/16 -20/20 -	-19/19 -19/14 -19/19	-19/19 -19/13 -19/19	-20/20 -20/18 -20/20	–12/19 –18/19 –18/18	–15/15 –15/15 –15/15
heta range / deg	2.520-40.496	2.521–37.475	2.528–37.999	2.538–39.496	2.539–36.400	2.510– 29.246
Reflections collected	23034	15674	15782	18502	13271	12840
Independent reflections	2397	1961	2021	2215	1795	1040
R _{int}	0.0459	0.044	0.0378	0.0449	0.0468	0.0521
Obs. reflections ($l > 2 \sigma(l)$)	2116	1718	1795	1940	1533	912
Refined parameters	60	60	60	60	60	60
R₁ (all data)	0.0243	0.0282	0.0252	0.0266	0.03	0.025
wR_2 (all data)	0.0349	0.04	0.0354	0.0363	0.0391	0.0307
GooF	1.081	1.095	1.086	1.076	1.049	1.069
Residual electron density (max; min) / e⁻ Å⁻³	2.05; -1.12	1.99; –1.21	1.45; –1.19	1.43; –1.30	1.28; –1.50	1.11; -0.84
^a The respective standard deviations are given in parentheses.						

Table S3. Crystal data and structu	ure refinements of Na	a₅ <i>M</i> (WO₄)₄ (M = La, F	Pr, Sm, Eu, Gd, Tb) de	termined from powder	XRD data via Rietveld r	efinement ^a
	Na₅La(WO₄)₄	Na₅Pr(WO₄)₄	Na₅Sm(WO₄)₄	Na₅Eu(WO₄)₄	Na₅Gd(WO₄)₄	Na₅Tb(WO₄)₄
CSD-No.	1986874					
<i>M</i> / g mol ^{−1}	1245.21	1247.21	1256.66	1258.26	1263.55	1265.23
Temperature / K				300(3)		
Space group				<i>I</i> 4₁ <i>/a</i> (No. 88)		
<i>a</i> / pm	1163.319(11)	1158.140(15)	1152.270(14)	1150.503(12)	1149.044(13)	1147.108(14)
<i>c</i> / pm	1154.299(13)	1148.516(17)	1142.453(16)	1140.722(14)	1139.496(15)	1137.197(16)
Volume / 10 ⁶ pm ³	1562.13(3)	1540.49(5)	1516.86(4)	1509.92(4)	1504.48(4)	1496.39(4)
Ζ				4		
R _{Bragg} / %	2.23	1.973	1.527	1.203	1.252	0.951
$ ho_{calcd}$ / g cm ⁻³	5.30	5.38	5.50	5.54	5.58	5.62
Radiation; wavelength λ / Å				Cu <i>Kα</i> ; 1.54184		
Diffractometer				Seifert 3003 TT		
2θ range / deg				5–120		
No. of independent parameters	49	49	49	49	49	49
Rwp	0.0375	0.0366	0.0382	0.0253	0.029	0.02257
Side phase	NaLa(WO ₄) ₂	NaPr(WO ₄) ₂	NaSm(WO ₄) ₂	NaEu(WO ₄) ₂	NaGd(WO ₄) ₂	NaTb(WO ₄) ₂
Fraction of side phase / wt% ^b	4.15	2.89	4.32	2.22	1.2	0.9
Space group				<i>I</i> 4₁ <i>/a</i> (No. 88)		
<i>a</i> / pm	535.799(18)	531.45(3)	527.10(2)	525.72(4)	524.80(8)	523.09(11)
<i>c</i> / pm	1165.51(7)	1154.88(13)	1143.46(10)	1140.84(17)	1137.1(3)	1135.0(5)
Volume / 10 ⁶ pm ³	334.60(3)	326.19(6)	317.70(4)	315.31(7)	313.16(13)	310.58(19)
Ζ				2		
R _{Bragg} / %	1.233	1.211	1.135	0.689	1.099	0.895

^a The respective standard deviations are given in parentheses. ^b The Na*M*(WO₄)₂ side phase was not refined under a fraction of 1 wt.%.

	Na₅Dy(WO₄)₄	Na₅Ho(WO₄)₄	Na₅Er(WO₄)₄	Na₅Lu(WO₄)₄	Na ₅ Y(WO ₄) ₄
CSD-No.			1986873	1986876	1986875
<i>M</i> / g mol ⁻¹	1268.80	1271.23	1273.56	1281.27	1195.21
Temperature / K			300(3)		
Space group			<i>I</i> 4₁/a (No. 88	3)	
<i>a /</i> pm	1145.626(15)	1143.999(12)	1142.573(13)	1138.701(12)	1143.616(11)
<i>c</i> / pm	1135.742(17)	1134.018(14)	1132.408(14)	1128.231(13)	1134.047(12)
Volume / 10 ⁶ pm ³	1490.61(4)	1484.13(4)	1478.33(4)	1462.91(3)	1483.17(3)
Z			4		
R _{Bragg} / %	1.52	1.32	1.6	1.63	1.69
$ ho_{ m calcd}$ / g cm $^{-3}$	5.66	5.69	5.72	5.82	5.35
Radiation; wavelength λ / Å			Cu <i>Ka</i> ; 1.5418	4 Å	
Diffractometer			Seifert 3003	ТТ	
2θ range / deg			5–120		
No. of independent parameters	46	46	46	49	46
R _{wp}	0.0375	0.0322	0.0394	0.036	0.0371
Side phase	-	-	-	NaLu(WO ₄) ₂	-
Fraction of side phase / wt% ^b	-	-	-	2.82	-
Space group	-	-	-	<i>l</i> 4 ₁ / <i>a</i> (No. 88)	-
<i>a /</i> pm	-	-	-	516.39(3)	-
c / pm	_	-	-	1117.20(11)	-
Volume / 10 ⁶ pm ³	-	-	-	297.91(4)	-
Z	-	-	-	2	-
R _{Bragg} / %	-	-	-	1.93	-

Table S4. Crystal data and structure refinements of Na₅M(WO₄)₄ (M = Dy, Ho, Er, Lu, Y) determined from powder XRD data via Rietveld refinement^a

^a The respective standard deviations are given in parentheses. ^b The Na*M*(WO₄)₂ side phase was not refined under a fraction of 1 wt.%.

Fig. S3: Rietveld refinements of (a) Na₅La(WO₄)₄, (b) Na₅Pr(WO₄)₄, (c) Na₅Sm(WO₄)₄, (d) Na₅Gd(WO₄)₄, (e) Na₅Tb(WO₄)₄ and (f) Na₅Dy(WO₄)₄ prepared by flux synthesis; further details can be found in Tables S3 and S4.

Fig. S4: Rietveld refinements of (a) Na₅Ho(WO₄)₄, (b) Na₅Er(WO₄)₄, (c) Na₅Lu(WO₄)₄ and (d) Na₅Y(WO₄)₄ prepared by flux synthesis; further details can be found in Table S4.

Fig. S5: Powder XRD pattern of polycrystalline NaEu(WO₄)₂ compared to a pattern calculated from single crystal data (see Table 1 and S1) showing phase purity.

Na/Eu–O [⊳]	245.71(18); 247.67(18)
∑ IR (Na/Eu–O) ^{1 c}	248
Na/Eu–Na/Eu	388.03(1)
W–O	178.97(18)
Σ IR (W–O) ¹	178
0-W-0	107.13(6); 114.26(12)

Table S5. Selected interatomic distances (in pm) and angles (in deg) of NaEu(WO₄)2^a

^a The respective standard deviations are given in parentheses; ^b There are two groups of four oxygen in different distances to cation; ^c The average value of Na⁺ and Eu³⁺ was used for the sum of ionic radii.

Fig. S6: Coordination environments of Na⁺/Eu³⁺(green) and W⁶⁺(blue) in NaEu(WO₄)₂: The former form [(Na/Eu)O₈] dodecahedra and the latter WO₄ tetrahedra; oxygen is depicted in red; the ellipsoids are shown at 90% probability.

Fig. S7: The unit cell of Na₅M(WO₄)₄ with blue WO₄ tetrahedra, green Na(1), dark green Na(2)) and grey M³⁺

Fig. S8: Coordination environments of Na⁺ (light green Na(1) and dark green Na(2)) Eu^{3+} (grey) and W⁶⁺(blue) in Na₅Eu(WO₄)₄: they form Na(1)O₆ trigonal prisms, Na(2)O₄ tetrahedra, WO₄ tetrahedra and EuO₈ dodecahedra together with oxygen (red), respectively; the ellipsoids are shown at 90% probability.

Fig. S9: The WO₄ tetrahedra's deviation from the tetrahedral symmetry calculated by the method of Balic-Zunic² and Makovicky³ is increasing with decreasing ionic radii of *M*³⁺ in Na₅*M*(WO₄)₄.

	Na₅La(WO₄)₄	Na ₅ Ce(WO ₄) ₄	Na₅Pr(WO₄)₄	Na ₅ Nd(WO ₄) ₄	Na₅Sm(WO₄)₄
Data	Rietveld	SC-XRD	SC-XRD	SC-XRD	SC-XRD
<i>М</i> –О ^ь	238(1)–247(1)	246.3(7)-247.1(7)	245.4(2)-245.8(2)	244.5(3)-244.7(3)	241.4(2)-241.9(2)
∑ IR (<i>M</i> –O) ¹	252	250.3	248.6	246.9	243.9
M–M	649.31(1)	646.98(1)	646.07(1)	645.20(2)	642.73(2)
Na(1)-O	217(1)–275(1)	228.2(8)–257.7(9)	228.7(2)-255.8(2)	229.1(3)-255.2(3)	228.7(2)-253.1(2)
∑ IR (Na(1)–O) ^{1 c}			238; 240		
⊿ _{octa} (Na(1)O ₆) ^d		2.00	2.14	2.34	2.79
Na(2)-O	239(1)	247.6(8)	246.3(2)	246.4(3)	245.5(2)
∑ IR (Na(2)–O) ^{1 c}			237		
⊿ _{tetr} (Na(2)O₄) ^d		7.39	7.18	7.33	7.40
W–O	170(1)–191(1)	176.5(7)–180.2(7)	175.6(2)–180.5(2)	175.6(3)–180.0(3)	175.9(2)–180.6(2)
∑ IR (W–O)¹ °			178; 180		
0–W–O	103.0(6)–116.2(5)	106.5(3)–113.3(3)	106.2(1)-113.4(1)	105.9(1)–113.5(1)	105.9(1)–113.7(1)
⊿tetr (WO₄) ^d	-	0.45	0.56	0.6	0.63
<i>M</i> –O–W	130.9(6)–137.0(6)	129.1(3)-130.4(4)	129.3(1)-130.2(1)	129.4(2)-130.3(1)	129.3(1)-130.3(1)

Table S6. Selected interatomic distances (in pm), angles (in deg) and the deviation from the ideal symmetry Δ_{octa} or Δ_{tetr} (in %) of Na₅*M*(WO₄)₄ (*M* = La, Ce, Pr, Nd, Sm)^a

^a The respective standard deviations are given in parentheses. The standard deviations from Rietveld refinement are numerical standard deviations as obtained from the refinement and do not necessarily represent an interval of trust.; ^b There are two distinct pairs of *M*-O distances. ^c Different sums of ionic radii due to oxygen with both CN = 3 and 4. ^d The deviation of the NaO₆ octahedra, NaO₄ tetrahedra and WO₄ tetrahedra from the ideal symmetry Δ_{octa} or Δ_{tetr} was calculated by the Balic-Zunic² and Makovicky³ for all structures derived from single-crystal XRD data.

	Na₅Eu(WO₄)₄	Na₅Gd(WO₄)₄	Na₅Tb(WO₄)₄	Na₅Dy(WO₄)₄	Na₅Ho(WO₄)₄
Data	SC-XRD	SC-XRD	SC-XRD	Rietveld	SC-XRD
<i>M</i> –O ^b	240.3(2)-240.7(2)	239.2(2)–239.2(2)	238.2(3)-238.8(3)	222(2)–238(2)	236.0(2)-237.1(2)
∑ IR (<i>M</i> –O) ¹	242.6	241.3	240	238.7	237.5
M–M	641.81(2)	640.20(2)	640.13(2)	639.32(1)	638.47(2)
Na(1)-O	229.3(2)-252.3(2)	228.9(2)-251.2(3)	229.6(3)-250.7(3)	226(2)–265(2)	229.6(3)-249.6(3)
∑ IR (Na(1)–O)¹ °			238; 240		
⊿ _{octa} (Na(1)O ₆) ^d	2.97	3.33	3.78		3.97
Na(2)-O	245.0(2)	245.0(2)	244.9(3)	242(2)	243.9(2)
∑ IR (Na(2)–O)¹			237		
⊿ _{tetr} (Na(2)O ₄) ^d	7.53	7.48	7.67		7.81
W–O	175.6(2)-180.7(2)	175.6(2)–181.0(2)	175.4(3)–180.6(3)	170(2)–191(2)	175.6(2)- 180.6(2)
∑ IR (W–O) ^{1 c}			178; 180		
0–W–0	105.6(1)–113.8(1)	107.1(1)–113.7(1)	105.5(1)–113.8(1)	97.7(9)–115.9(8)	105.3(1)–114.0(1)
⊿tetr (WO₄) ^d	0.71	0.75	0.73		0.79
<i>M</i> –O–W	129.4(1)-130.1(1)	129.4(1)-130.0(1)	129.5(1)-130.2(1)	133(1)–133.5(9)	129.5(1)-130.0(1)

Table S7. Selected interatomic distances (in pm), angles (in deg) and deviation from the ideal symmetry Δ_{octa} or Δ_{tetr} (in %) of Na₅*M*(WO₄)₄ (*M* = Eu, Gd, Tb, Dy, Ho)^a

^a The respective standard deviations are given in parentheses. The standard deviations from Rietveld refinement are numerical standard deviations as obtained from the refinement and do not necessarily represent an interval of trust.; ^b There are two distinct pairs of *M*-O distances. ^c Different sums of ionic radii due to oxygen with both CN = 3 and 4. ^d The deviation of the NaO₆ octahedra, NaO₄ tetrahedra and WO₄ tetrahedra from the ideal symmetry Δ_{octa} or Δ_{tetr} was calculated by the Balic-Zunic² and Makovicky³ for all structures derived from single-crystal XRD data.

	Na₅Er(WO₄)₄	Na₅Tm(WO₄)₄	Na₅Yb(WO₄)₄
Data	Rietveld	SC-XRD	SC-XRD
<i>M</i> –O ^b	232(1)–243(1)		233.3(3)-234.7(3)
∑ IR (<i>M</i> –O) ¹	236.4	235.4	234.5
M–M	637.59(1)	636.14(3)	635.93(5)
Na(1)-O	208(1)-264(2)	228.9(3)-247.7(3)	229.6(3)-247.2(3)
∑ IR (Na(1)–O) ^{1 c}		238; 240	
⊿ _{octa} (Na(1)O ₆) ^d		4.53	4.37
Na(2)-O	228(2)	243.1(2)	243.5(3)
∑ IR (Na(2)–O)¹		237	
⊿ _{tetr} (Na(2)O ₄) ^d		7.77	8.01
W–O	170(1)– 191(2)	175.3(2)- 181.0(2)	175.7(3)–181.0(3)
∑ IR (W–O) ^{1 c}		178; 180	
O–W–O	98.6(7)-116.5(7)	105.2(1)–114.1(1)	104.9(1)-114.3(1)
⊿ _{tetr} (WO₄) ^d	-	0.89	0.92
<i>M</i> –O–W	130.7(7)–131.7(8)	129.4(1)-129.9(1)	129.3(1)-129.6(1)

Table S8. Selected interatomic distances (in pm), angles (in deg) and deviation from the ideal symmetry Δ_{octa} or Δ_{tetr} (in %) of Na₅*M*(WO₄)₄ (*M* = Er, Tm, Yb)^a

^a The respective standard deviations are given in parentheses. The standard deviations from Rietveld refinement are numerical standard deviations as obtained from the refinement and do not necessarily represent an interval of trust.; ^b There are two distinct pairs of *M*-O distances. ^c Different sums of ionic radii due to oxygen with both CN = 3 and 4. ^d The deviation of the NaO₆ octahedra, NaO₄ tetrahedra and WO₄ tetrahedra from the ideal symmetry Δ_{octa} or Δ_{tetr} was calculated by the method of Balic-Zunic² and Makovicky³ for all structures derived from single-crystal XRD data.

Table S9. Selected interatomic distances (in pm), angles (in deg) and deviation from the ideal symmetry Δ_{octa} or Δ_{tetr} (in %) of Na₅*M*(WO₄)₄ (*M* = Lu, Y, Bi)^a

Na₅Lu(WO₄)₄	Na ₅ Y(WO ₄) ₄	Na₅Bi(WO₄)₄
Rietveld	Rietveld	SC-XRD
226(1)–238(1)	228(1)–243(1)	243.7(4)-244.5(4)
233.7	237.9	234.5
635.39(1)	638.23(1)	643.85(2)
212(2)-269(2)	218(1)-258(2)	228.8(4)-253.4(4)
	238; 240	
		2.17
237(2)	242(1)	245.8(4)
	237	
		7.49
172(1)–190(1)	164(1)–189(1)	175.3(4)–180.5(4)
	178; 180	
98.5(7)–119.8(6)	99.8(6)–114.6(5)	105.3(2)-114.1(2)
-	-	0.71
130.2(7)–131.2(7)	130.2(6)-135.2(6)	128.5(2)-129.3(2)
	Na₅Lu(WO₄)₄ Rietveld 226(1)-238(1) 233.7 635.39(1) 212(2)-269(2)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^a The respective standard deviations are given in parentheses. The standard deviations from Rietveld refinement are numerical standard deviations as obtained from the refinement and do not necessarily represent an interval of trust.; ^b There are two distinct pairs of *M*-O distances. ^c Different sums of ionic radii due to oxygen with both CN = 3 and 4. ^d The deviation of the NaO₆ octahedra, NaO₄ tetrahedra and WO₄ tetrahedra from the ideal symmetry Δ_{octa} or Δ_{tetr} was calculated by the method of Balic-Zunic² and Makovicky³ for all structures derived from single-crystal XRD data.

Fig. S10: Group–subgroup scheme in the Bärnighausen formalism^{4,5} showing the symmetry relation between Na₅Eu(WO₄)₄ and NaEu(WO₄)₂.

Fig. S11: Coordination environments of W⁶⁺ (blue) in (a) NaEu(WO₄)₂ and (b) Na₅Eu(WO₄)₄: they differ in the second coordination sphere; the WO₄ tetrahedra in the first coordination sphere are tetracapped and tricapped in the second coordination sphere, respectively; oxygen is depicted in red, tungsten in blue.

Fig. S12: DSC signals of $Na_5M(WO_4)_4$ (M = La, Pr, Eu, Gd, Tb, Ho, Yb, Lu, Bi): all samples show one endothermic peak related to the simultaneous melting and decomposition point labelled with the temperature of the peaks' maxima (T_d).

Fig. S13: Rietveld refinement of Na₅Y_{0.5}Eu_{0.5}(WO₄)₄ prepared via the flux synthesis with 500% Na₂WO₄ surplus showing a phase mixture of 45% Na₅Y(WO₄)₄ and 55% Na₅Eu(WO₄)₄: details can be found in Table S12; the enlarged depiction on the right shows the splitting of the mainreflection at $2\theta \approx 29.5^{\circ}$.

Fig. S14: (a) Rietveld refinement of $Na_5Y_{0.5}Tb_{0.5}(WO_4)_4$ prepared via the synthesis with 500% Na_2WO_4 surplus showing a phase mixture of 58% $Na_5Y(WO_4)_4$ and 42% $Na_5Eu(WO_4)_4$ and (b) of $Na_5Y_{0.5}Tb_{0.5}(WO_4)_4$ after subsequent melting at 800°C in a Pt crucible showing a phase mixture of 83% $Na_5Y_{0.5}Tb_{0.5}(WO_4)_4$, 15% $Na_5Y_{0.5}Tb_{0.5}(WO_4)_2$ and 2% Na_2WO_4 : details can be found in Table S12.

Fig. S15: Rietveld refinement of Na₅Y_{0.5}Eu_{0.5}(WO₄)₄ prepared via the synthesis with 500% Na₂WO₄ surplus and subsequently melted at 800°C in a Pt crucible showing a phase mixture of 83% Na₅Y_{0.5}Eu_{0.5}(WO₄)₄, 15% NaY_{0.5}Eu_{0.5}(WO₄)₂ and 2% Na₂WO₄: details can be found in Table S12; the enlarged depiction on the right shows the non-splitting of the mainreflection at $2\theta \approx 29.5^{\circ}$.

Fig. S16: Rietveld refinement of $Na_5Y_{0.5}Eu_{0.5}(WO_4)_4$ prepared via solid state syntheses A1 (a) and A2 (b): The product of synthesis A1 consists of a phase mixture of 38% $Na_5Y(WO_4)_4$, 47% $Na_5Eu(WO_4)_4$, 6% $NaY(WO_4)_2$ and 9% $NaEu(WO_4)_2$, while the sample prepared via A2 shows only two phases of 89% $Na_5Y_{0.5}Eu_{0.5}(WO_4)_4$ and 11% $NaY_{0.5}Eu_{0.5}(WO_4)_2$; details can be found in Table S12.

Fig. S17: Variable temperature powder XRD patterns of Na₅Y_{0.5}Eu_{0.5}(WO₄)₄ prepared via the flux synthesis with 500% Na₂WO₄ surplus compared to theoretical patterns calculated from the single crystal data for Na₅Eu(WO₄)₄ and NaEu(WO₄)₂ plus from literature for Na₂WO₄:⁶ the pattern show the closing of the miscibility gap between 680°C and 720°C with the double reflection around 2θ =29° becoming a single reflection as well as the decomposition into NaY_{0.5}Eu_{0.5}(WO₄)₂ and Na₂WO₄ starting around 700°C; moreover, the reflexes related to Na₂WO₄ disappear above 720°C due to the melting of this phase; there is an experimental offset between the furnace temperatures displayed in the graph and the actual temperature at the sample of approximately 20°C; the additional reflection at 2θ =21.5° marked with a black asterisk could be assigned to the orthorhombic high-temperature modification of Na₂WO₄ reported by Pistorius.⁷

Table S10. Structural data from	n the Rietveld refineme	ent on Na₅Y _{1-x} Eu _x (WO₄)₄ aı	nd Na₅Y₁-yTby(WO₄)₄ ^{a, b}			
	Na ₅ Y _{0.5} Eu _{0.5} (WO ₄) ₄	Na ₅ Y _{0.5} Eu _{0.5} (WO ₄) ₄ M ^c	Na ₅ Y _{0.5} Eu _{0.5} (WO ₄) ₄ (A1)	Na ₅ Y _{0.5} Eu _{0.5} (WO ₄) ₄ (A2)	Na ₅ Y _{0.5} Tb _{0.5} (WO ₄) ₄	Na ₅ Y _{0.5} Tb _{0.5} (WO ₄) ₄ M ^c
R _{wp}	0.04434	0.04029	0.02439	0.05042	0.02004	0.04092
No. of independent parameters	44	42	49	43	45	46
Temperature / K	300(3)					
Radiation; wavelength λ / Å	CuKa; 1.54184					
Diffractometer	Seifert 3003 TT					
2θ range / deg	5–120					
First Phase	Na₅Y(WO₄)₄	Na ₅ Y _{0.5} Eu _{0.5} (WO ₄) ₄	Na ₅ Y(WO ₄) ₄	Na ₅ Y _{0.5} Eu _{0.5} (WO ₄) ₄	Na ₅ Y(WO ₄) ₄	Na ₅ Y _{0.5} Tb _{0.5} (WO ₄) ₄
Fraction of first phase / wt%	45	83	38	89	42	83
<i>a</i> / pm	1143.70(2)	1146.879(14)	1143.60(2)	1146.315(17)	1143.562(16)	1145.023(18)
<i>c</i> / pm	1134.14(3)	1137.303(15)	1134.40(4)	1138.78(2)	1133.83(2)	1135.50(2)
Volume / 10 ⁶ pm ³	1483.50(7)	1495.93(4)	1483.58(8)	1496.40(6)	1482.75(5)	1488.73(6)
R _{Bradd} / %	2.279	2.263	1.088	3.254	1.036	2.224
Second Phase	Na₅Eu(WO₄)₄	NaY _{0.5} Eu _{0.5} (WO ₄) ₂	Na ₅ Eu(WO ₄) ₄	NaY _{0.5} Eu _{0.5} (WO ₄) ₂	Na ₅ Tb(WO ₄) ₄	NaY _{0.5} Tb _{0.5} (WO ₄) ₂
Fraction of second phase / wt%	55	15	47	11	58	15
<i>a /</i> pm	1149.57(2)	523.357(14)	1149.05(2)	522.89(5)	1146.404(15)	521.938(19)
<i>c</i> / pm	1140.25(4)	1133.64(6)	1140.18(4)	1134.2(2)	1136.631(18)	1129.70(8)
Volume / 10 ⁶ pm ³	1506.86(8)	310.51(2)	1505.38(7)	310.10(8)	1493.81(5)	307.75(3)
R _{Bragg} / %	3.033	1.963	1.462	1.995	0.897	1.787
Third phase		Na ₂ WO ₄ ^d	NaY(WO ₄) ₂			Na ₂ WO ₄ ^d
Fraction of third phase / wt%		2	6			2
<i>a</i> / pm		912.80(5)	520.67(4)			913.29(7)
<i>c</i> / pm		912.80(5)	1127.27(15)			913.29(7)
Volume / 10 ⁶ pm ³		760.54(13)	305.60(6)			761.78(17)
R _{Bragg} / %		1.968	1.250			1.543
Forth phase			NaEu(WO ₄) ₂			
Fraction of forth phase / wt%			9			
<i>a</i> / pm			525.15(3)			
c/pm			1138.43(11)			
Volume / 10 ⁶ pm ³			313.95(4)			
R _{Bragg} / %			1.025			

^a The respective standard deviations are given in parentheses. ^b Unless specified differently, all phases crystallise in space group $I4_1/a$ (No. 88) with Z = 4 for all Na₅M(WO₄)₄ phases and Z = 2 for all NaM(WO₄)₂ phases, respectively. ^c The suffix M symbolises the samples obtained from the melt at 800°C. ^d Na₂WO₄ crystallises in space group Fd3m (No. 227) with Z = 8.

	Na ₅ Y _{0.49} Eu _{0.51} (WO ₄) ₄	Na ₅ Y _{0.49} Tb _{0.51} (WO ₄) ₄) ₄			
CSD-No.	1986865	19868560			
<i>M</i> / g mol ⁻¹	1228.23	1231.29			
Crystal size / mm ³	0.05 × 0.02 × 0.02	0.05 × 0.03 × 0.03			
Temperature / K	30	00(3)			
Space group	I4 ₁ /a	(No. 88)			
<i>a</i> / pm	1146.81(4)	1146.02(2)			
<i>c</i> / pm	1137.59(4)	1136.78(3)			
Volume / 10 ⁶ pm ³	1496.13(12)	1493.00(7)			
Ζ		4			
$ ho_{ m calcd}$ / g cm ⁻³	5.45	5.47			
Absorption coefficient μ / mm ⁻¹	34.9	35.2			
F(000) / e	2120	2124			
Radiation; wavelength λ / Å	ΜοΚα; 0.71073				
Diffractometer	Bruker [08 Venture			
Absorption correction	Mult	li-scan			
Transmission (min; max)	0.6078; 0.7475	0.4460; 0.7491			
Index range <i>h</i> <i>k</i> /	-20/20 -20/19 -19/19	-21/21 -21/21 -21/21			
heta range / deg	2.522–38.483	2.524–42.492			
Reflections collected	26544	20167			
Independent reflections	2103	2682			
R _{int}	0.0633	0.0221			
Obs. reflections ($l > 2 \sigma(l)$)	1822	2438			
Refined parameters	61	61			
<i>R</i> ₁ (all data)	0.0271	0.021			
wR ₂ (all data)	0.0325	0.0311			
GooF	1.054	1.113			
Residual electron density (max; min) / e ⁻	1.68; -1.45	1.28; -1.14			

Table S11. Crystal data and structure refinements of $Na_5Y_{0.49}Eu_{0.51}(WO_4)_4$ and $Na_5Y_{0.49}Tb_{0.51}(WO_4)_4$ determined from single-crystal data^a

^a The respective standard deviations are given in parentheses.

Fig.S18: FTIR spectra of Na₅*M*(WO₄)₄ (*M* = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Bi)

Fig.S19: UV/Vis spectra of Na₅*M*(WO₄)₄ (*M* = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Bi)

Na ₅ Ce(WO ₄) ₄	Wavelength λ / nm	Energy E / cm ⁻¹	Transition
	350	28571	4f-5d
Na₅Pr(WO₄)₄	Wavelength λ / nm	Energy E / cm ⁻¹	f-f transition
	449	22272	${}^3H_4 \rightarrow {}^1I_6$
	474	21097	${}^3H_4 \rightarrow {}^3P_1$
	487	20534	${}^3H_4 \rightarrow {}^3P_0$
	587	17036	$^{3}H_{4}\rightarrow \ ^{1}D_{2}$
	595	16807	$^{3}H_{4}\rightarrow \ ^{1}D_{2}$
	609	16420	$^{3}H_{4}\rightarrow \ ^{1}D_{2}$
Na₅Nd(WO₄)₄	Wavelength λ / nm	Energy E / cm ⁻¹	f-f transition
	353	28329	${}^{4}I_{9/2} \rightarrow {}^{2}I_{11/2}$
	360	27778	${}^4\text{I}_{9/2} \rightarrow {}^4\text{D}_{3/2}$
	422	23697	${}^{4}I_{9/2} \rightarrow {}^{2}D_{5/2}$
	432; 435	23148	${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$
	461	21692	${}^{4}I_{9/2} \rightarrow {}^{4}G_{11/2}, \ \bigl({}^{2}D, {}^{2}F\bigr)_{3/2}$
	473	21142	${}^{4}I_{9/2} \rightarrow {}^{2}G_{9/2}$
	480	20833	${}^{4}I_{9/2} \rightarrow {}^{2}K_{15/2}$
	517	19342	${}^4I_{9/2} \rightarrow {}^4G_{9/2}$
	527; 532	18975	${}^4\text{I}_{9/2} \rightarrow {}^4\text{G}_{7/2}$
	576; 583, 587	17361	${}^{4}I_{9/2} \rightarrow {}^{2}G_{7/2}$
	594	16835	${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2}$
	631	15848	${}^{4}I_{9/2} \rightarrow {}^{2}H_{11/2}$
	677, 688	14771	${}^4\text{I}_{9/2} \rightarrow {}^4\text{F}_{9/2}$
	741	13495	${}^{4}I_{9/2} \rightarrow {}^{5}S_{3/2}$
	752	13298	${}^{4}I_{9/2} \to {}^{4}F_{7/2}$
	791	12642	${}^{4}I_{9/2} \rightarrow {}^{2}H_{9/2}$
Na₅Sm(WO₄)₄	Wavelength λ / nm	Energy E / cm ⁻¹	f-f transition
	364	27473	${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{D}_{3/2}$
	377	26525	${}^{6}H_{5/2} \rightarrow {}^{6}P_{7/2}$
	392	25510	${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{L}_{15/2}$
	405	24691	${}^{6}H_{5/2} \rightarrow {}^{4}L_{13/2}$
	420	23810	${}^{6}\text{H}_{5/2} \rightarrow ({}^{6}\text{P}, {}^{4}\text{P})_{5/2}$
	440	22727	${}^{6}H_{5/2} \rightarrow {}^{4}G_{9/2}$
	452	22124	$^6\text{H}_{5/2} \rightarrow {}^4\text{F}_{5/2}$
	464	21552	${}^{6}H_{5/2} \rightarrow {}^{6}I_{13/2}$

Table S12. Assignment of absorption bands in UV/Vis spectra of $Na_5M(WO_4)_4$ besides the O²⁻-W⁶⁺ LMCT foundbetween 230 nm and 250 nm for all samples.

	476	21008	${}^{6}H_{5/2} \rightarrow {}^{4}I_{11/2}$
	481	20790	${}^{6}H_{5/2} \rightarrow {}^{4}M_{15/2}$
	491	20367	$^6H_{5/2} \rightarrow \ ^4I_{9/2}$
	502	19920	$^6H_{5/2} \rightarrow {}^4G_{7/2}$
	531	18832	${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{3/2}$
	562	17794	$^6H_{5/2} \rightarrow {}^4G_{5/2}$
Na₅Eu(WO₄)₄ ^b	Wavelength λ / nm	Energy E / cm ⁻¹	f-f transition
	395	25316	$^7\text{F}_0 \rightarrow {}^5\text{L}_6$
	465; 474	21505	$^7\text{F}_0 \rightarrow {}^5\text{D}_2$
	526; 536	19011	$^7F_0 \rightarrow {}^5D_1$
	579	17271	$^7\text{F}_0 \rightarrow {}^5\text{D}_0$
Na₅Dy(WO₄)₄	Wavelength λ / nm	Energy E / cm ⁻¹	f-f transition
	327	30581	$^{6}H_{15/2}\rightarrow \ ^{6}P_{3/2}$
	353	28329	$^6H_{15/2} \rightarrow ^6P_{7/2}$
	366	27322	${}^{6}H_{15/2} \rightarrow {}^{4}M_{19/2}$
	388	25773	${}^{6}\text{H}_{15/2} \rightarrow {}^{4}\text{I}_{13/2}$
	428	23364	$^6H_{15/2} \rightarrow {}^4G_{11/2}$
	454	22026	$^{6}H_{15/2} \rightarrow ^{4}I_{15/2}$
	475	21053	$^{6}H_{15/2} \rightarrow ^{4}F_{9/2}$
	759	13175	$^6H_{15/2} \to ^6F_{3/2}$
Na₅Ho(WO₄)₄	Wavelength λ / nm	Energy E / cm ⁻¹	f-f transition
	335	29851	${}^{5}I_{8} \rightarrow \big({}^{3}F, {}^{3}H, {}^{3}G\big)_{4}$
	347	28818	${}^5\text{I}_8 \rightarrow {}^5\text{G}_3$
	361	27701	${}^{5}I_{8} \rightarrow ({}^{5}G, \; {}^{3}H)_{5}$
	383	26110	${}^{5}I_{8} \rightarrow {}^{3}K_{7}$
	388	25773	${}^5I_8 \rightarrow {}^5G_4$
	419	23867	${}^{5}I_{8} \rightarrow ({}^{5}G, \ {}^{3}G)_{5}$
	452	22124	${}^{5}I_{8} \rightarrow {}^{5}F_{1}, {}^{5}G_{6}$
	469	21322	${}^{5}I_{8} \rightarrow {}^{3}K_{8}$
	475	21053	${}^{5}I_{8} \rightarrow {}^{5}F_{2}$
	480; 487	20833	${}^{5}I_{8} \rightarrow {}^{5}F_{3}$
	540	18519	${}^{5}I_{8} \rightarrow {}^{5}F_{4}, {}^{5}S_{2}$
	644; 654; 659	15528	${}^{5}I_{8} \rightarrow {}^{5}F_{5}$
Na₅Er(WO₄)₄	Wavelength λ / nm	Energy E / cm ⁻¹	f-f transition
	357	28011	${}^{4}I_{15/2} \rightarrow {}^{2}G_{7/2}$
	366	27322	${}^{4}I_{15/2} \rightarrow {}^{4}G_{9/2}$

	379	26385	${}^4\text{I}_{15/2} \rightarrow {}^4\text{G}_{11/2}$
	407	24570	${}^{4}I_{15/2} \rightarrow ({}^{2}G, {}^{4}F)_{9/2}$
	445; 452	22472	${}^4\text{I}_{15/2} \rightarrow {}^4\text{F}_{5/2}$
	488	20492	${}^{4}I_{15/2} \rightarrow {}^{4}F_{7/2}$
	521	19194	${}^{4}I_{15/2} \rightarrow ({}^{2}H, {}^{4}G)_{11/2}$
	539; 545; 551	18553	${}^4\text{I}_{15/2} \rightarrow {}^4\text{S}_{3/2}$
	653	15314	${}^4\text{I}_{15/2} \rightarrow {}^4\text{F}_{9/2}$
	769	13004	${}^{4}I_{15/2} \rightarrow {}^{4}I_{9/2}$
Na₅Tm(WO₄)₄	Wavelength λ / nm	Energy E / cm ⁻¹	f-f transition
	359	27855	${}^{3}H_{6} \rightarrow {}^{1}D_{2}$
	466; 473	21459	${}^3H_6 \rightarrow {}^1G_4$
	662	15106	${}^{3}\text{H}_{6} \rightarrow {}^{3}\text{F}_{2}$
	690; 704	14493	${}^{3}\text{H}_{6} \rightarrow {}^{3}\text{F}_{3}$
	786; 795	12723	${}^{3}\text{H}_{6} \rightarrow {}^{3}\text{H}_{4}$

^a Doublets and triplets are marked by two or three values in the λ column. Only the respective energy for the first value is displayed. ^b The O²⁻⁻W⁶⁺ LMCT (λ = 230 nm) is overlapped with the O²⁻⁻Eu³⁺ LMCT (λ = 250nm).

Na₅Pr(WO₄)₄			
Excitation	Wavelength λ / nm	Energy E / cm ⁻¹	Assignment
A	250	40000	O ^{2—} W ⁶⁺ LMCT
В	446	22422	${}^3\text{H}_4 \rightarrow {}^1\text{I}_6$
С	470	21277	${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{P}_{1}$
D	484	20661	${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{P}_{0}$
Emission	Wavelength λ / nm	Energy E / cm ⁻¹	Assignment
	481; 488, 496	20790	${}^{3}P_{0} \rightarrow {}^{3}H_{4}$
	528	18939	${}^{3}P_{1} \rightarrow {}^{3}H_{5}$
	546, 553	18315	${}^{3}P_{0} \rightarrow {}^{3}H_{5}$
	595	16807	$^{1}D_{2} \rightarrow {}^{3}H_{4}$
	616	16234	${}^{3}P_{0} \rightarrow {}^{3}H_{6}$
	646	15480	${}^{3}P_{0} \rightarrow {}^{3}F_{2}$
	680	14706	${}^{3}P_{0} \rightarrow {}^{3}F_{3}$
	730	13699	${}^3\text{P}_0 \rightarrow {}^3\text{F}_4$
Na₅Sm(WO₄)₄			
Excitation	Wavelength λ / nm	Energy E / cm ⁻¹	Assignment
A	240	41667	O ^{2—} W ⁶⁺ LMCT
В	304	32895	${}^{6}H_{5/2} \rightarrow {}^{4}P_{5/2}$
С	316	31646	${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{P}_{3/2}$
D	331	30211	${}^{6}H_{5/2} \rightarrow {}^{4}G_{9/2}$
E	344	29070	$^{6}H_{5/2} \rightarrow \left(^{4}H_{9/2}, ^{4}D_{7/2} \right)$
F	362	27624	${}^{6}H_{5/2} \rightarrow {}^{4}D_{3/2}$
G	375	266667	${}^{6}\text{H}_{5/2} \rightarrow {}^{6}\text{P}_{7/2}$
Н	390	25641	${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{L}_{15/2}$
1	403	24814	${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{L}_{13/2}$
J	417	23981	${}^{6}\text{H}_{5/2} \rightarrow ({}^{6}\text{P}, {}^{4}\text{P})_{5/2}$
К	439	22779	$^{6}H_{5/2} \rightarrow ^{4}G_{9/2}$
L	448	22321	${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{5/2}$
М	465	21505	${}^{6}\text{H}_{5/2} \rightarrow {}^{6}\text{I}_{13/2}$
Ν	471	21231	${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{I}_{11/2}$
0	479	20877	$^{6}H_{5/2} \rightarrow ^{4}M_{15/2}$
Ρ	487	20534	$^{6}H_{5/2}\rightarrow \ ^{4}I_{9/2}$
Q	497	20121	${}^{6}H_{5/2} \rightarrow {}^{4}G_{7/2}$
Emission	Wavelength λ / nm	Energy E / cm ⁻¹	Assignment

TableS13.AssignmentofemissionandexcitationpeaksinthefluorescencespectraofNa5M(WO4)4.89,10,13,14,19,20,21,22,23,24,25,26,27,28 a

	553; 562	17794	${}^{4}\overline{G_{5/2}} \rightarrow {}^{6}H_{5/2}$
	600	16667	${}^4G_{5/2} \rightarrow {}^6H_{7/2}$
	645; 664	15504	${}^4G_{5/2} \to {}^6H_{9/2}$
	703	14225	${}^4G_{5/2} \rightarrow {}^6H_{11/2}$
	772	12953	${}^4G_{5/2} \rightarrow {}^6H_{13/2}$
Na₅Eu(WO₄)₄			
Excitation	Wavelength λ / nm	Energy E / cm ⁻¹	Assignment
A	270	37037	O ² W ⁶⁺ LMCT + O ²⁻ -Eu ³⁺ LMCT
В	285	35088	${}^{7}F_{0} \rightarrow ({}^{5}I, {}^{5}H)_{6}$
С	293	34130	$^{7}F_{0} \rightarrow {}^{5}F_{5}$
D	298	33557	${}^7F_0 \rightarrow {}^5F_4$
E	302	33113	${}^{7}F_{0} \rightarrow {}^{5}F_{2}$
F	305	32787	${}^7\text{F}_0 \rightarrow {}^3\text{P}_0$
G	317	31546	$^{7}F_{0} \rightarrow {}^{5}H_{6}$
Н	321	31153	$^{7}F_{0} \rightarrow {}^{5}H_{7}$
I	326	30675	$^7\text{F}_0 \rightarrow {}^5\text{H}_3$
J	361	27701	$^7\text{F}_0 \rightarrow ^5\text{D}_4$
К	366	27322	${}^7\text{F}_0 \rightarrow {}^5\text{L}_3$
L	375	26667	${}^7\text{F}_0 \rightarrow {}^5\text{G}_6$
Μ	380	26316	${}^{7}F_{0} \rightarrow {}^{5}L_{7}$
N	383	26110	${}^7\text{F}_0 \rightarrow {}^5\text{G}_2$
0	393; 396; 399	25445	${}^7\text{F}_0 \rightarrow {}^5\text{L}_6$
Р	415	24096	$^7\text{F}_0 \rightarrow \ ^5\text{D}_3$
Q	464; 472, 481, 488	21552	$^7\text{F}_0 \rightarrow \ ^5\text{D}_2$
Emission	Wavelength λ / nm	Energy E / cm ⁻¹	Assignment
	535	18692	$^5\text{D}_0 \rightarrow \ ^7\text{F}_0$
	591	16920	${}^5D_0 \rightarrow {}^7F_1$
	606; 611; 615	16502	${}^{5}D_{0} \rightarrow {}^{7}F_{2}$
	653	15314	$^5\text{D}_0 \rightarrow \ ^7\text{F}_3$
	693; 699; 702	14430	$^5D_0 \rightarrow \ ^7F_4$
Na ₅ Tb(WO ₄) ₄			
Excitation	Wavelength λ / nm	Energy E / cm ⁻¹	Assignment
A	251	39841	$O^{2-}W^{6+} LMCT + Tb^{3+} 4f \rightarrow 5d$
В	284	35211	${}^{7}F_{6} \rightarrow {}^{5}I_{8}$
С	295	33898	${}^{7}F_{6}$ \rightarrow ${}^{5}H_{5}$
D	303	33003	${}^{7}F_{6}$ \rightarrow ${}^{5}H_{6}$

E	317	31546	${}^{7}F_{6} \rightarrow {}^{5}H_{7}$
F	326	30675	${}^{7}F_{6} \rightarrow {}^{5}D_{1}$
G	339	29499	${}^{7}F_{6} \rightarrow {}^{5}L_{7}$
н	351	28490	${}^{7}F_{6} \rightarrow {}^{5}L_{9}$
1	358	27933	$^7F_6 \rightarrow {}^5G_5$
J	369	27100	${}^7\text{F}_6 \rightarrow {}^5\text{L}_{10}$
К	377	26525	${}^7\text{F}_6 \rightarrow {}^5\text{G}_6$
Emission	Wavelength λ / nm	Energy E / cm ⁻¹	Assignment
	487; 493	20534	${}^{5}D_{4} \rightarrow {}^{7}F_{6}$
	543; 547	18416	$^5\text{D}_4 \rightarrow \ ^7\text{F}_5$
	581; 587	17212	${}^{5}D_{4} \rightarrow {}^{7}F_{4}$
	616; 620	16234	${}^{5}D_{4} \rightarrow {}^{7}F_{3}$
	644; 650	15528	${}^{5}D_{4} \rightarrow {}^{7}F_{2}$
	669	14948	${}^{5}D_{4} \rightarrow {}^{7}F_{1}$
	679	14728	${}^{5}D_{4} \rightarrow {}^{7}F_{0}$
Na₅Bi(WO₄)₄ ^b			
Excitation	Wavelength λ / nm	Energy E / cm ⁻¹	Assignment
	250; 258	40000	O ^{2—} W ⁶⁺ LMCT
	273; 275	36630	${}^{1}S_{o} \rightarrow {}^{1}P_{1}$
	281; 290	35587	${}^{1}S_{o} \rightarrow {}^{3}P_{1}$
Emission	Wavelength λ / nm	Energy E / cm ⁻¹	Assignment
	470	21277	${}^3P_1 \rightarrow {}^1S_0$

^a Doublets, triplets et cetera are marked by two or three values in the λ column. Only the respective energy for the first value is displayed. ^b The two λ values for Na₅Bi(WO₄)₄ represent the maxima at both room temperature and 77 K.

Fig. S20: Excitation and emission spectra of Na₅Y(WO₄)₄ measured at 77 K: the compound shows a broad W⁶⁺-O²⁻ LMCT emission centred at 460 nm; the excitation spectrum was not corrected with respect to the lamp intensity.

Fig. S21: Gaussian fit of the excitation spectra of $Na_5Eu(WO_4)_4$ (a) and $Na_5Y_{0.95}Eu_{0.05}(WO_4)_4$ (b): they were fitted using two peaks centred at 239 nm (O²-W⁶⁺ LMCT) for both spectra and at 266.5 nm (a) and 260.5 nm (b) (O²-Eu³⁺ LMCT), respectively; the excitation spectra are corrected with respect to the lamp intensity.

Fig. S22: Trend of the ratio of the emission intensity related to the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transitions and the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transitions of Tb³⁺ varying with *y* in Na₅Y_{1-y}Tb_y(WO₄)₄.

Fig. S23: Energy Levels of the Tb^{3+} f-states compared to the energy of the W⁶⁺-O²⁻ LMCT: The transferred energy is sufficient to reach the green emitting ⁵D₄ state, only. Consequently, no blue emission originating in the ⁵D₃ state is observed when exciting the WO₄²⁻ ion's LMCT.

Fig. S24: Excitation spectra of Na₅Y_{1-y}Tb_y(WO₄)₄ (y = 0.01, 0.02, 0.05, 1) showing an increase of the intensity ratio of the broad LMCT band around 250 nm and the f-f transitions of Tb³⁺ with decreasing Tb³⁺ content.

Fig. S25: Gaussian fit of the excitation spectra of Na₅Bi(WO₄)₄ at both room temperature and 77K. The excitation spectra are not corrected with respect to the lamp intensity.

Fig. S26: Magnetic properties of $Na_5M(WO_4)_4$: temperature dependence of the magnetic susceptibility (χ and χ^{-1} data) measured at 10 kOe of magnetic properties of (a) $Na_5Ce(WO_4)_4$, (b) $Na_5Pr(WO_4)_4$, (d) $Na_5Gd(WO_4)_4$, (e) $Na_5Tb(WO_4)_4$, (f) $Na_5Tm(WO_4)_4$, (g) $Na_5Yb(WO_4)_4$ and (h) $Na_5Bi(WO_4)_4$; (c) magnetic properties of $Na_5Pr(WO_4)_4$: magnetisation isotherms at 3, 10 and 50 K.

References

- 1 R. D. Shannon, Acta Cryst A, 1976, **32**, 751–767.
- 2 T. Balić Žunić and E. Makovicky, Acta Cryst Sect A Found Cryst, 1996, **52**, 78–81.
- 3 E. Makovicky and T. Balić-Žunić, Acta Crystallogr B Struct Sci, 1998, 54, 766–773.
- 4 H. Bärnighausen, MATCH, Communications in Mathematical Chemistry, 1980, 9, 139–175.
- 5 U. Müller, Z. Anorg. Allg. Chem., 2004, 630, 1519–1537.
- 6 A. D. Fortes, Acta Crystallogr., Sect. E: Crystallogr. Commun., 2015, 71, 592–596.
- 7 C. W. F. T. Pistorius, J. Chem. Phys., 1966, 44, 4532–4537.
- 8 D. Huang, Y. Zhou, W. Xu, Z. Yang, M. Hong and J. Yu, *J. Lumin.*, 2012, **132**, 2788–2793.
- 9 D. Huang, Y. Zhou, W. Xu, Z. Yang, Z. Liu, M. Hong, Y. Lin and J. Yu, J. Alloys Compd., 2013, 554, 312–318.
- 10 D. Qin and W. Tang, RSC Adv., 2016, 6, 45376–45385.
- 11 J. Dong, X. Wang, L. Song, J. Yang, H. Wu, C. Yang and S. Gan, Dalton Trans., 2018, 47, 15061–15070.
- 12 S. Tanimizu, in *Phosphor handbook*, ed. H. Yamamoto, S. Shionoya and W. M. Yen, Taylor & Francis distributor, Boca Raton, Fla, London, 2nd edn., 2007, pp. 155–273.
- 13 W. T. Carnall, P. R. Fields and K. Rajnak, J. Chem. Phys., 1968, 49, 4424–4442.
- 14 W. T. Carnall, P. R. Fields and K. Rajnak, J. Chem. Phys., 1968, 49, 4450–4455.
- 15 W. T. Carnall, P. R. Fields and B. G. Wybourne, J. Chem. Phys., 1965, 42, 3797–3806.
- 16 J. Liao, S. Zhang, H. You, H.-R. Wen, J.-L. Chen and W. You, Opt. Mater., 2011, 33, 953–957.
- 17 M. Daub, A. J. Lehner and H. A. Höppe, *Dalton Trans.*, 2012, **41**, 12121–12128.
- 18 J.P.M. van Vliet and G. Blasse, J. Solid State Chem., 1990, 85, 56–64.
- 19 F. B. Xiong, Z. W. Zhang, H. F. Lin, L. J. Wang, Y. C. Xu and W. Z. Zhu, Opt. Mater., 2015, 42, 394–398.
- 20 N. Saito, N. Sonoyama and T. Sakata, BCSJ, 1996, 69, 2191–2194.
- 21 S.-B. Kim, B. G. Kum, H. M. Jang, A. Lakshmanan and B. k. Kang, J. Lumin., 2011, 131, 1625–1628.
- 22 J. Liao, B. Qiu, H. Wen, J. Chen, W. You and L. Liu, J. Alloys Compd., 2009, 487, 758–762.
- 23 X. Shi, M. S. Molokeev, X. Wang, Z. Wang, Q. Zhu and J.-G. Li, Inorg. Chem., 2018, 57, 10791–10801.
- 24 Y. Liu, G. Liu, J. Wang, X. Dong and W. Yu, *Inorg. Chem.*, 2014, **53**, 11457–11466.
- 25 K. Binnemans, Coord. Chem. Rev., 2015, 295, 1-45.
- 26 G. Blasse, J. Solid State Chem., 1972, 4, 52–54.
- 27 P. Dorenbos, J. Phys.: Condens. Matter, 2003, 15, 8417–8434.
- 28 H. E. Hoefdraad, J. Solid State Chem., 1975, 15, 175–177.