ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Spin crossover in 2D Iron(II) Phthalazine Cyanometallic Complexes

Volodymyr M. Hiiuk,^{abc} Sergiu Shova,^d Aurelian Rotaru,^e Alexander A. Golub,^c

Igor O. Fritsky^{ab} and Il'ya A. Gural'skiy^{*ab}

Contents of the Supporting Information:

Experimental details

Figure S1. FT-IR spectrum of 1 and 2 for HS samples at 293 K.

Figure S2. Experimental PXRD patterns of 1 and 2 for HS samples at 293 K.

Figure S3. Experimental and calculated PXRD patterns for 2 in HS state.

Figure S4. Experimental and calculated PXRD patterns for 1 in HS state.

Figure S5. 2D nets of {Fe(Pd(CN)₄} in 1.

Table S1. Summary of spin transition temperatures for 2D Hofmann-type SCO coordination polymers based on phthalazine (phth), pyridine (py), pyridazine (pdz) and pyrazine (pz).

Table S2. The values of spin transition temperatures for 2D Hofmann-type SCO coordination polymers based on phthalazine (phth) obtained by different techniques.

Tables S3. Crystal data and structure refinement for 1 at 260 K.

Tables S4. Crystal data and structure refinement for 1 at 200 K.

Tables S5. Crystal data and structure refinement for 2 at 260 K.

Tables S6. Crystal data and structure refinement for 2 at 200 K.

Experimental details

Syntesis of iron (II) p-toluenesulphonate hexahydrate (Fe(OTs)₂·6H₂O)¹

To iron powder (4.07 g, 72.9 mmol) in a 250-mL, round-bottomed flask equipped with a reflux condenser is added *p*-toluenesulfonic acid monohydrate (13.45 g, 70.7 mmol) and water (20 mL). The mixture is heated to reflux for 5 h. The pale green solution is filtered while hot, and the filter cake is washed with water (3×10 mL). The filtrate is allowed to cool to room temperature, and pale green needles form within 2 h. The crystals are collected by filtration and dried overnight under vacuum at room temperature. Yield: 13.92 g (77.8 %).

1. D. Coucouvanis, in *Inorganic Syntheses*, Wiley, New York, USA, 2002, **33**, 75–121.

Fig. S2 Experimental PXRD patterns of 1 and 2 for HS samples at 293 K.

Fig. S3 Experimental and calculated PXRD patterns for 2 in HS state.

Fig. S4 Experimental and calculated PXRD patterns for 1 in HS state.

Fig. S5 2D nets of {Fe(Pd(CN)₄} in **1** (Fe: olive green, Pd: pink, N: blue, C: gray).

Table S1. Summary of spin transition temperatures for 2D Hofmann-type SCO coordination polymers based on phthalazine (phth), pyridine (py), pyridazine (pdz) and pyrazine (pz).

	Pd			Pt		
Composition complex	SCO*	Т _с (К)	ΔT _C (K)	SCO*	Т _с (К)	ΔT _C (K)
[Fe(phth)₂M(CN)₄]	с	202 / 207	5	с	211 / 218	7
[Fe(py)2M(CN)4] ²	nc	208 / 213	5	nc	208 / 216	8
[Fe(pdz) ₂ M(CN) ₄] ³	с	247 / 260	13	с	269 / 283	14
[Fe(pdz) ₂ M(CN) ₄]·H ₂ O ³	nc	242 / 265	23	nc	235 / 255	20
[Fe(pz) ₂ M(CN) ₄]·nH ₂ O ² Pd ^{II} (n = 2.5); Pt ^{II} (n = 2)	С	233 / 266	33	С	220 / 240	20

*c = complete SCO; nc = not compete SCO.

- 2. V. Niel, J. M. Martinez-Agudo, M. C. Muñoz, A. B. Gaspar and J. A. Real, *Inorg. Chem.*, 2001, **40**, 3838–3839.
- 3. I. A. Gural'skiy, S. I. Shylin, V. Ksenofontov and W. Tremel, *Eur. J. Inorg. Chem.*, 2019, **2019**, 4532–4537.

Table S2. The values of spin transition temperatures for 2D Hofmann-type SCO coordination polymers based on phthalazine (phth) obtained by different techniques.

	Magnetic	Calorimetric	Optical	Spectroscopic
Complex	measurements	measurements	measurements	measurements
				(Raman)
[Fe(phth) ₂ Pd(CN) ₄] (1)	T _{1/2} ↓ = 202 K	T _{1/2} ↓ = 195 K	T _{1/2} ↓ = 193 K	T _{1/2} ↓ = 201 K
	T _{1/2} ↑ = 207 K	T _{1/2} ↑ = 204 K	T _{1/2} ↑ = 203 K	T _{1/2} 个 = 206 K
[Fe(phth) ₂ Pt(CN) ₄] (2)	$T_{1/2} \downarrow = 211 \text{ K}$	T _{1/2} ↓ = 202 K	T _{1/2} ↓ = 201 K	$T_{1/2} \downarrow = 211 \text{ K}$
	T _{1/2} ↑ = 218 K	T _{1/2} ↑ = 214 K	T _{1/2} ↑ = 214 K	T _{1/2} ↑ = 220 K

Crystallographic Tables

Table S3. Crystal data and structure refinement for 1 at 260 K.

Identification code	Pd_HS
Empirical formula	$C_{20}H_{12}FeN_8Pd$
Formula weight	526.63
Temperature/K	260
Crystal system	triclinic
Space group	P-1
a/Å	7.2433(4)
b/Å	7.4455(4)
c/Å	10.4263(9)
α/°	71.858(6)
β/°	69.586(6)
γ/°	89.943(5)
Volume/ų	497.11(6)
Z	1
$\rho_{calc}g/cm^3$	1.759
µ/mm ⁻¹	1.658
F(000)	260.0
Crystal size/mm ³	$0.1 \times 0.1 \times 0.05$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	'4.418 to 58.876
Index ranges	$-9 \le h \le 9$, $-10 \le k \le 10$, $-13 \le l \le 13$
Reflections collected	7465
Independent reflections	2416 [R_{int} = 0.0284, R_{sigma} = 0.0330]
Data/restraints/parameters	2416/0/139
Goodness-of-fit on F ²	1.141
Final R indexes [I>=2σ (I)]	R ₁ = 0.0417, wR ₂ = 0.1113
Final R indexes [all data]	$R_1 = 0.0444$, $wR_2 = 0.1134$
Largest diff. peak/hole / e Å $^{\rm -3}$	3.22/-0.58

L0 ³) for 1 (HS). I	J _{eq} is defined as	1/3 of of the tra	ace of the orthog	ionalised U _{IJ} tenso
Atom	x	у	z	U(eq)
Pd1	0	5000	0	16.64(14)
Fe1	-5000	0	0	18.00(18)
N1	-2621(5)	2169(5)	-515(4)	30.0(8)
N2	2888(5)	1952(5)	436(4)	28.2(7)
N3	-4893(5)	973(5)	-2257(4)	28.6(7)
N4	-3065(6)	1080(6)	-3305(4)	37.1(9)
C1	-1619(6)	3208(5)	-379(4)	22.5(7)
C2	1798(6)	3031(6)	345(4)	23.8(8)
C9	-6321(7)	2228(7)	-4067(5)	31.4(9)
C3	-2901(7)	1720(8)	-4652(5)	40.5(11)
C10	-6417(7)	1467(7)	-2615(5)	31.8(9)
C4	-4454(7)	2368(7)	-5148(5)	34.6(10)
C8	-7932(8)	2847(8)	-4463(6)	43.1(12)
C7	-7632(9)	3646(8)	-5911(7)	50.6(14)
C6	-5782(10)	3768(9)	-6975(6)	53.9(15)
C5	-4204(8)	3135(8)	-6625(6)	48.1(13)

Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 1 (HS). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U 12
Pd1	14.7(2)	13.2(2)	25.9(2)	-8.31(15)	-10.38(15)	4.15(13)
Fe1	18.2(3)	13.7(4)	28.6(4)	-9.1(3)	-14.4(3)	5.4(3)
N1	31.3(18)	25.2(18)	39(2)	-12.0(16)	-18.4(16)	2.1(14)
N2	32.8(18)	25.2(17)	35.1(19)	-13.6(15)	-19.3(16)	12.1(14)
N3	29.8(17)	28.0(18)	30.1(18)	-8.8(15)	-14.4(15)	3.1(14)
N4	28.7(19)	44(2)	35(2)	-7.6(18)	-12.7(16)	3.6(16)
C1	22.9(18)	17.1(17)	30(2)	-8.5(15)	-12.3(15)	3.3(14)
C2	25.1(18)	20.7(18)	29(2)	-10.4(16)	-12.4(16)	4.6(15)
C9	33(2)	34(2)	31(2)	-10.8(18)	-17.0(18)	3.9(17)
C3	28(2)	50(3)	36(2)	-9(2)	-7.0(19)	-2(2)
C10	29(2)	40(2)	28(2)	-10.8(18)	-11.7(17)	6.6(18)
C4	39(2)	33(2)	30(2)	-6.8(18)	-14.3(19)	-3.2(18)
C8	45(3)	51(3)	40(3)	-14(2)	-24(2)	11(2)
C7	59(3)	52(3)	54(3)	-9(3)	-43(3)	7(3)
C6	71(4)	55(3)	34(3)	2(2)	-32(3)	-13(3)
C5	46(3)	58(3)	29(2)	-4(2)	-10(2)	-12(2)

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 1 (HS). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U₁ tensor.

Bond Lengths for 1 (HS).

Atom Atom		Length/Å	/Å Atom Atom		Length/Å
Pd1	C1	1.991(4)	N3	N4	1.375(5)
Pd1	$C1^1$	1.991(4)	N3	C10	1.302(5)
Pd1	$C2^1$	1.992(4)	N4	C3	1.296(6)
Pd1	C2	1.992(4)	C9	C10	1.418(6)
Fe1	N1 ²	2.164(3)	C9	C4	1.405(7)
Fe1	N1	2.164(3)	C9	C8	1.400(6)
Fe1	N2 ³	2.140(3)	C3	C4	1.420(7)
Fe1	N2 ⁴	2.140(3)	C4	C5	1.410(7)
Fe1	N3	2.209(4)	C8	C7	1.376(7)
Fe1	N3 ²	2.209(4)	C7	C6	1.391(9)
N1	C1	1.135(5)	C6	C5	1.358(8)
N2	C2	1.132(5)			

¹-X,1-Y,-Z; ²-1-X,-Y,-Z; ³-1+X,+Y,+Z; ⁴-X,-Y,-Z

Bond Angles for 1 (HS).

Atom Atom Atom An		Angle/°	Atom Atom Atom			Angle/°	
C1	Pd1	$C1^1$	180.0	C1	N1	Fe1	160.7(3)
C1	Pd1	C2	90.15(15)	C2	N2	Fe1⁵	163.8(3)
$C1^1$	Pd1	$C2^1$	90.15(15)	N4	N3	Fe1	115.6(3)
$C1^1$	Pd1	C2	89.85(15)	C10	N3	Fe1	123.8(3)
C1	Pd1	$C2^1$	89.85(15)	C10	N3	N4	120.6(4)
C2	Pd1	$C2^1$	180.0	C3	N4	N3	118.1(4)
N1	Fe1	N1 ²	180.0	N1	C1	Pd1	176.0(4)
N1	Fe1	N3	91.97(14)	N2	C2	Pd1	175.0(4)
N1 ²	Fe1	N3 ²	91.97(14)	C4	C9	C10	115.9(4)
N1 ²	Fe1	N3	88.03(14)	C8	C9	C10	124.4(4)
N1	Fe1	N3 ²	88.03(14)	C8	C9	C4	119.7(4)
N2 ³	Fe1	N1 ²	90.15(14)	N4	C3	C4	125.3(5)
N2 ⁴	Fe1	N1 ²	89.85(14)	N3	C10	C9	124.0(4)
N2 ⁴	Fe1	N1	90.15(14)	C9	C4	C3	116.1(4)
N2 ³	Fe1	N1	89.85(14)	C9	C4	C5	120.1(5)
N2 ⁴	Fe1	N2 ³	180.00(19)	C5	C4	C3	123.9(5)
N2 ⁴	Fe1	N3	92.04(14)	C7	C8	C9	119.0(5)
N2 ³	Fe1	N3 ²	92.04(14)	C8	C7	C6	120.9(5)
N2 ⁴	Fe1	N3 ²	87.96(14)	C5	C6	C7	121.4(5)
N2 ³	Fe1	N3	87.96(14)	C6	C5	C4	118.8(5)
N3	Fe1	N3 ²	180.0				

¹-X,1-Y,-Z; ²-1-X,-Y,-Z; ³-1+X,+Y,+Z; ⁴-X,-Y,-Z; ⁵1+X,+Y,+Z

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 1 (HS).

Atom	X	У	Z	U(eq)
H3	-1664.82	1758.25	-5350.54	49
H10	-7642.8	1311.83	-1874.11	38
H8	-9185.31	2720.4	-3758.35	52
H7	-8680.66	4111.38	-6182.74	61
H6	-5621.54	4294.07	-7947.48	65
H5	-2979.75	3206.5	-7346.48	58

Aromatic H refined with riding coordinates

Table S4. Crystal data and structure refinement for 1 at 200 K.

Identification code	Pd_LS
Empirical formula	$C_{20}H_{12}FeN_8Pd$
Formula weight	526.63
Temperature/K	200.05(10)
Crystal system	triclinic
Space group	P-1
a/Å	7.0962(7)
b/Å	7.1676(7)
c/Å	10.1546(16)
α/°	71.083(11)
β/°	74.381(11)
γ/°	89.881(8)
Volume/ų	468.49(10)
Z	1
$\rho_{calc}g/cm^3$	1.867
µ/mm ⁻¹	1.760
F(000)	260.0
Crystal size/mm ³	$0.1 \times 0.1 \times 0.05$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	4.422 to 58.964
Index ranges	-6 ≤ h ≤ 9, -7 ≤ k ≤ 9, -8 ≤ l ≤ 13
Reflections collected	3684
Independent reflections	2138 [R _{int} = 0.0360, R _{sigma} = 0.0775]
Data/restraints/parameters	2138/0/139
Goodness-of-fit on F ²	1.022
Final R indexes [I>=2σ (I)]	R ₁ = 0.0558, wR ₂ = 0.1287
Final R indexes [all data]	$R_1 = 0.0699$, $wR_2 = 0.1362$
Largest diff. peak/hole / e Å $^{\text{-}3}$	3.70/-1.12

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 1 (LS). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
Pd1	5000	10000	10000	13.1(2)
Fe1	0	5000	10000	11.3(2)
N2	1940(6)	3132(6)	9749(5)	15.1(9)
C1	3191(7)	8097(7)	9757(6)	15.0(11)
N3	206(6)	5957(6)	7894(5)	18.7(10)
N1	2047(6)	6982(6)	9736(5)	15.3(9)
C3	2202(8)	6743(9)	5572(7)	27.0(13)
N4	2043(6)	6131(7)	6946(6)	23.4(11)
C9	-1180(8)	7211(8)	5898(6)	20.5(12)
C8	-2804(9)	7813(9)	5367(7)	28.1(14)
C10	-1317(8)	6444(8)	7386(7)	21.6(12)
C6	-647(10)	8716(9)	2919(7)	33.0(15)
C4	662(8)	7361(9)	4926(7)	24.9(13)
C5	920(9)	8114(9)	3429(7)	30.4(14)
C7	-2508(10)	8582(10)	3896(8)	35.5(16)
C2	3103(8)	2021(8)	9772(6)	15.6(11)

Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 1 (LS). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd1	8.4(3)	11.4(3)	21.8(4)	-7.6(2)	-5.6(2)	1.43(19)
Fe1	8.9(5)	9.4(5)	17.8(6)	-6.0(4)	-5.3(4)	1.9(4)
N2	17(2)	11(2)	16(2)	-3.7(18)	-2.7(18)	1.2(16)
C1	11(2)	11(2)	27(3)	-9(2)	-10(2)	3.9(19)
N3	15(2)	19(2)	21(3)	-8(2)	-2.2(19)	0.1(17)
N1	16(2)	13(2)	17(2)	-3.7(18)	-7.8(18)	1.8(16)
C3	19(3)	32(3)	24(3)	-7(3)	-1(2)	-3(2)
N4	13(2)	30(3)	24(3)	-7(2)	-3.1(19)	-0.7(18)
C9	21(3)	22(3)	21(3)	-9(2)	-7(2)	1(2)
C8	24(3)	37(4)	27(4)	-12(3)	-10(3)	1(2)
C10	18(3)	25(3)	24(3)	-10(2)	-7(2)	2(2)
C6	42(4)	28(3)	23(4)	-1(3)	-9(3)	-6(3)
C4	23(3)	26(3)	28(3)	-10(3)	-9(3)	-3(2)
C5	28(3)	36(4)	23(3)	-6(3)	-5(3)	-2(3)
C7	31(4)	45(4)	35(4)	-11(3)	-19(3)	-2(3)
C2	16(3)	14(3)	19(3)	-10(2)	-5(2)	1.9(19

Bond Lengths for 1 (LS).

Atom Atom		Length/Å	Atom	Atom	Length/Å
Pd1	$C1^1$	1.991(5)	N3	N4	1.374(6)
Pd1	C1	1.991(5)	N3	C10	1.318(7)
Pd1	C2 ²	1.977(5)	C3	N4	1.292(8)
Pd1	C2 ³	1.977(5)	C3	C4	1.420(8)
Fe1	N2 ⁴	1.944(5)	C9	C8	1.410(8)
Fe1	N2	1.944(5)	C9	C10	1.406(8)
Fe1	N3 ⁴	1.987(5)	C9	C4	1.390(8)
Fe1	N3	1.987(5)	C8	C7	1.370(9)
Fe1	N1	1.937(4)	C6	C5	1.362(9)
Fe1	N1 ⁴	1.937(4)	C6	C7	1.404(9)
N2	C2	1.145(7)	C4	C5	1.398(9)
C1	N1	1.150(7)			

¹1-X,2-Y,2-Z; ²1-X,1-Y,2-Z; ³+X,1+Y,+Z; ⁴-X,1-Y,2-Z

Bond Angles for 1 (LS).

Atom Atom Atom		Atom	Angle/°	Atom Atom Atom		Angle/°	
$C1^1$	Pd1	C1	180.0	C2	N2	Fe1	171.1(5)
C2 ²	Pd1	C1	89.5(2)	N1	C1	Pd1	174.1(5)
C2 ²	Pd1	$C1^1$	90.5(2)	N4	N3	Fe1	117.2(3)
C2 ³	Pd1	$C1^1$	89.5(2)	C10	N3	Fe1	123.0(4)
C2 ³	Pd1	C1	90.5(2)	C10	N3	N4	119.8(5)
C2 ²	Pd1	C2 ³	180.0	C1	N1	Fe1	171.8(5)
N2 ⁴	Fe1	N2	180.0	N4	C3	C4	126.2(6)
N2	Fe1	N3	91.49(19)	C3	N4	N3	118.0(5)
N2 ⁴	Fe1	N3	88.50(19)	C10	C9	C8	123.3(6)
N2	Fe1	N3 ⁴	88.51(19)	C4	C9	C8	119.5(6)
N2 ⁴	Fe1	N3 ⁴	91.50(19)	C4	C9	C10	117.2(5)
N3 ⁴	Fe1	N3	180.0	C7	C8	C9	118.8(6)
N1	Fe1	N2 ⁴	89.47(18)	N3	C10	C9	123.7(5)
N1 ⁴	Fe1	N2	89.47(18)	C5	C6	C7	120.0(6)
N1	Fe1	N2	90.53(18)	C9	C4	C3	115.1(6)
N14	Fe1	N2 ⁴	90.53(18)	C9	C4	C5	120.7(5)
N14	Fe1	N3	88.08(18)	C5	C4	C3	124.3(6)
N1	Fe1	N3	91.92(18)	C6	C5	C4	119.6(6)
N1 ⁴	Fe1	N3 ⁴	91.92(18)	C8	C7	C6	121.4(6)
N1	Fe1	N3 ⁴	88.08(18)	N2	C2	Pd1 ⁵	174.9(5)
N1	Fe1	$N1^4$	180.0				

¹1-X,2-Y,2-Z; ²1-X,1-Y,2-Z; ³+X,1+Y,+Z; ⁴-X,1-Y,2-Z; ⁵+X,-1+Y,+Z

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 1 (LS).

Atom	x	У	Z	U(eq)
H3	3441.44	6782.22	4948.19	32
H8	-4052.07	7691.3	6002.22	34
H10	-2551.69	6269.97	8049.8	26
H6	-484.64	9214.9	1924.05	40
H5	2155.78	8203.79	2784.59	36
H7	-3562.75	9025.45	3536.89	43

Aromatic H refined with riding coordinates

Table S5. Crystal data and structure refinement for 2 at 260 K.

Identification code	Pt_HS
Empirical formula	$C_{20}H_{12}FeN_8Pt$
Formula weight	615.32
Temperature/K	260(1)
Crystal system	triclinic
Space group	P-1
a/Å	7.2754(8)
b/Å	7.4315(9)
c/Å	10.3903(14)
α/°	72.230(11)
β/°	70.501(11)
γ/°	89.988(10)
Volume/ų	501.04(11)
Z	1
$\rho_{calc}g/cm^3$	2.039
µ/mm ⁻¹	7.721
F(000)	292.0
Crystal size/mm ³	$0.1 \times 0.1 \times 0.02$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	4.396 to 58.412
Index ranges	$-9 \le h \le 9, -10 \le k \le 10, -13 \le l \le 13$
Reflections collected	3951
Independent reflections	2300 [$R_{int} = 0.0484$, $R_{sigma} = 0.0973$]
Data/restraints/parameters	2300/0/139
Goodness-of-fit on F ²	1.048
Final R indexes [I>=2σ (I)]	R ₁ = 0.0546, wR ₂ = 0.1052
Final R indexes [all data]	R ₁ = 0.0557, wR ₂ = 0.1071
Largest diff. peak/hole / e Å $^{\text{-}3}$	4.92/-1.80

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 2 (HS). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	Ζ	U(eq)
Pt1	5000	0	10000	20.67(15)
Fe1	10000	5000	10000	20.7(4)
C9	8657(13)	7213(12)	5934(10)	33(2)
N2	2098(10)	3032(10)	9586(9)	32.0(18)
C1	6658(12)	1810(11)	10334(10)	24.8(18)
C10	8573(13)	6428(12)	7372(10)	32(2)
C4	10481(13)	7390(13)	4873(10)	34(2)
C8	7050(15)	7825(14)	5493(13)	44(3)
N4	11894(11)	6100(11)	6714(9)	38.3(19)
N1	7668(10)	2867(9)	10477(8)	28.5(16)
N3	10080(11)	5960(10)	7745(8)	31.1(17)
C5	10729(17)	8183(15)	3415(12)	52(3)
C7	7329(18)	8648(16)	4054(14)	56(3)
C3	12022(15)	6763(15)	5377(12)	43(2)
C2	3176(12)	1967(11)	9675(10)	25.5(18)
C6	9166(17)	8795(14)	3021(12)	50(3)

Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 2 (HS). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U22	U33	U ₂₃	U ₁₃	U ₁₂
Pt1	18.2(2)	16.6(2)	32.7(3)	-12.21(18)	-11.93(19)	5.60(16)
Fe1	18.0(8)	16.3(7)	35.2(10)	-11.8(7)	-15.3(7)	6.5(6)
C9	36(5)	30(5)	31(5)	-9(4)	-12(4)	2(4)
N2	31(4)	29(4)	52(5)	-23(4)	-25(4)	19(3)
C1	19(4)	25(4)	31(5)	-11(4)	-8(4)	5(3)
C10	25(4)	42(5)	28(5)	-7(4)	-14(4)	10(4)
C4	33(5)	34(5)	32(5)	-9(4)	-10(4)	-8(4)
C8	36(5)	53(6)	56(8)	-18(5)	-30(5)	18(5)
N4	25(4)	47(5)	39(5)	-11(4)	-10(4)	6(3)
N1	27(4)	26(4)	38(5)	-13(3)	-15(3)	3(3)
N3	33(4)	31(4)	35(5)	-15(3)	-15(4)	5(3)
C5	56(7)	56(7)	35(6)	-9(5)	-11(6)	-5(6)
C7	63(8)	60(7)	64(9)	-20(6)	-46(7)	16(6)
C3	34(5)	54(6)	35(6)	-13(5)	-3(5)	1(5)
C2	25(4)	19(4)	42(6)	-19(4)	-15(4)	8(3)
C6	69(8)	49(6)	30(6)	2(5)	-30(6)	-6(6)

Bond Lengths for 2 (HS).

Atom	Length/Å	Atom	Atom	Length/Å
C1	1.988(8)	C9	C8	1.419(12)
$C1^1$	1.988(8)	N2	C2	1.120(10)
C2	2.002(8)	C1	N1	1.151(10)
$C2^1$	2.002(8)	C10	N3	1.294(11)
N2 ²	2.144(7)	C4	C5	1.395(14)
N2 ³	2.144(7)	C4	C3	1.411(14)
N1	2.144(6)	C8	C7	1.375(15)
N1 ⁴	2.144(6)	N4	N3	1.374(10)
N3 ⁴	2.212(8)	N4	C3	1.295(13)
N3	2.212(8)	C5	C6	1.366(15)
C10	1.408(12)	C7	C6	1.386(16)
C4	1.389(13)			
	Atom C1 C1 ¹ C2 C2 ¹ N2 ² N1 N1 ⁴ N3 ⁴ N3 C10 C4	AtomLength/ÅC1 $1.988(8)$ C1^1 $1.988(8)$ C2 $2.002(8)$ C2^1 $2.002(8)$ N2^2 $2.144(7)$ N2^3 $2.144(7)$ N1 $2.144(6)$ N1^4 $2.144(6)$ N3^4 $2.212(8)$ N3 $2.212(8)$ C10 $1.408(12)$ C4 $1.389(13)$	AtomLength/ÅAtomC1 $1.988(8)$ C9C1^1 $1.988(8)$ N2C2 $2.002(8)$ C1C2^1 $2.002(8)$ C10N2^2 $2.144(7)$ C4N2^3 $2.144(7)$ C4N1 $2.144(6)$ C8N1^4 $2.144(6)$ N4N3 $2.212(8)$ N4N3 $2.212(8)$ C5C10 $1.408(12)$ C7C4 $1.389(13)$ -1000	AtomLength/ÅAtom AtomC1 $1.988(8)$ C9C8C1^1 $1.988(8)$ N2C2C2 $2.002(8)$ C1N1C2^1 $2.002(8)$ C10N3N2^2 $2.144(7)$ C4C5N2^3 $2.144(7)$ C4C3N1 $2.144(6)$ N4N3N3^4 $2.212(8)$ N4C3N3 $2.212(8)$ C5C6C10 $1.408(12)$ C7C6C4 $1.389(13)$ $$

¹1-X,-Y,2-Z; ²1+X,+Y,+Z; ³1-X,1-Y,2-Z; ⁴2-X,1-Y,2-Z

Bond Angles for 2 (HS).

Atom Atom Atom		Angle/°	Atom Atom Atom		Angle/°			
	C1	Pt1	$C1^1$	180.0	C10	C9	C8	125.6(9)
	C1	Pt1	C2	90.4(3)	C4	C9	C10	116.3(8)
	$C1^1$	Pt1	C2	89.6(3)	C4	C9	C8	118.1(9)
	C1	Pt1	C2 ¹	89.6(3)	C2	N2	Fe1⁵	164.3(8)
	$C1^1$	Pt1	C2 ¹	90.4(3)	N1	C1	Pt1	177.5(8)
	C2	Pt1	C2 ¹	180.0	N3	C10	C9	124.2(9)
	N2 ²	Fe1	N2 ³	180.0	C9	C4	C5	120.8(9)
	N2 ³	Fe1	N3	92.4(3)	C9	C4	C3	115.5(9)
	N2 ³	Fe1	N3 ⁴	87.6(3)	C5	C4	C3	123.7(10)
	N2 ²	Fe1	N3	87.6(3)	C7	C8	C9	120.3(11)
	N2 ²	Fe1	N3 ⁴	92.4(3)	C3	N4	N3	117.1(8)
	N1	Fe1	N2 ³	90.0(3)	C1	N1	Fe1	161.1(7)
	$N1^4$	Fe1	N2 ³	90.0(3)	C10	N3	Fe1	124.2(7)
	N1	Fe1	N2 ²	90.0(3)	C10	N3	N4	120.4(8)
	N1 ⁴	Fe1	N2 ²	90.0(3)	N4	N3	Fe1	115.3(5)
	N1 ⁴	Fe1	N1	180.0	C6	C5	C4	119.9(11)
	N1 ⁴	Fe1	N3 ⁴	87.8(3)	C8	C7	C6	120.0(10)
	N1	Fe1	N3	87.8(3)	N4	C3	C4	126.2(10)
	N1	Fe1	N3 ⁴	92.2(3)	N2	C2	Pt1	175.6(9)
	N1 ⁴	Fe1	N3	92.2(3)	C5	C6	C7	120.7(10)
	N3 ⁴	Fe1	N3	180.0				

¹1-X,-Y,2-Z; ²1-X,1-Y,2-Z; ³1+X,+Y,+Z; ⁴2-X,1-Y,2-Z; ⁵-1+X,+Y,+Z

Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 2 (HS).

Atom	x	У	Z	U(eq)
H10	7354.67	6233.56	8100.75	38
H8	5802.36	7668.27	6181.19	53
H5	11956.65	8293.73	2713.43	62
H7	6284.94	9105.56	3774.04	67
H3	13246.29	6833.1	4682.7	52
H6	9336.56	9317.6	2047.73	60

Aromatic H refined with riding coordinates

Table S6. Crystal data and structure refinement for 2 at 200 K.

Identification code	Pt_LS
Empirical formula	$C_{20}H_{12}FeN_8Pt$
Formula weight	615.32
Temperature/K	200.00(14)
Crystal system	triclinic
Space group	P-1
a/Å	7.1262(5)
b/Å	7.1724(5)
c/Å	10.1727(8)
α/°	71.020(7)
β/°	75.175(6)
γ/°	89.950(6)
Volume/ų	473.38(6)
Z	1
ρ _{calc} g/cm ³	2.158
µ/mm ⁻¹	8.172
F(000)	292.0
Crystal size/mm ³	$0.1 \times 0.1 \times 0.02$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	4.398 to 50.046
Index ranges	-7 ≤ h ≤ 8, -8 ≤ k ≤ 7, -12 ≤ l ≤ 11
Reflections collected	3227
Independent reflections	1662 [R _{int} = 0.0427, R _{sigma} = 0.0656]
Data/restraints/parameters	1662/0/139
Goodness-of-fit on F ²	1.052
Final R indexes [I>=2σ (I)]	$R_1 = 0.0366$, $wR_2 = 0.0765$
Final R indexes [all data]	$R_1 = 0.0371$, $wR_2 = 0.0771$
Largest diff. peak/hole / e Å ⁻³	2.54/-1.72

Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 2 (LS). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
Pt1	0	5000	0	15.50(14)
Fe1	5000	10000	0	14.3(3)
N1	2954(8)	8017(9)	251(6)	18.1(13)
N2	6920(8)	8123(8)	-237(6)	16.3(13)
C1	1831(10)	6924(10)	214(7)	14.7(15)
C2	8043(10)	7020(10)	-224(7)	15.1(15)
N3	4802(8)	9030(8)	2101(6)	18.8(13)
C3	2838(11)	8268(12)	4403(9)	28.0(18)
N4	2972(9)	8881(9)	3035(7)	23.6(14)
C7	7554(12)	6415(13)	6130(9)	36(2)
C9	6207(11)	7780(11)	4113(8)	21.5(16)
C6	5687(12)	6271(12)	7083(9)	34(2)
C10	6314(10)	8557(11)	2630(8)	19.5(16)
C4	4374(10)	7629(11)	5066(8)	20.7(16)
C5	4134(12)	6878(12)	6569(9)	31.2(19)
C8	7818(11)	7174(12)	4664(9)	28.1(18)

Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 2 (LS). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U_{11}	U22	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pt1	13.2(2)	12.8(2)	23.2(2)	-7.41(17)	-7.77(16)	2.70(15)
Fe1	13.7(7)	12.0(7)	20.4(8)	-7.0(6)	-8.1(6)	3.1(6)
N1	15(3)	15(3)	26(3)	-7(3)	-8(3)	5(3)
N2	14(3)	12(3)	19(3)	-1(3)	-3(2)	-2(3)
C1	16(4)	9(4)	22(4)	-3(3)	-11(3)	6(3)
C2	13(3)	14(4)	16(4)	-3(3)	-2(3)	2(3)
N3	21(3)	13(3)	23(3)	-7(3)	-6(3)	2(3)
C3	25(4)	28(5)	29(5)	-11(4)	-3(3)	0(4)
N4	22(3)	20(4)	27(4)	-6(3)	-7(3)	4(3)
C7	33(5)	46(6)	36(5)	-15(5)	-21(4)	6(4)
C9	26(4)	14(4)	27(4)	-8(3)	-12(3)	2(3)
C6	42(5)	32(5)	26(4)	-7(4)	-11(4)	-4(4)
C10	11(3)	22(4)	29(4)	-13(4)	-7(3)	2(3)
C4	26(4)	14(4)	25(4)	-7(3)	-10(3)	3(3)
C5	35(5)	24(5)	29(5)	-5(4)	-5(4)	-6(4)
C8	28(4)	30(5)	28(4)	-8(4)	-14(3)	8(4)

Bond Lengths for 2 (LS).

Atom Atom		Length/Å	Atom	Atom	Length/Å
Pt1	C1	1.999(7)	N3	N4	1.384(8)
Pt1	$C1^1$	1.999(7)	N3	C10	1.321(9)
Pt1	C2 ²	2.010(7)	C3	N4	1.293(10)
Pt1	C2 ³	2.010(7)	C3	C4	1.428(10)
Fe1	N1 ⁴	1.947(6)	C7	C6	1.413(11)
Fe1	N1	1.947(6)	C7	C8	1.373(11)
Fe1	N2	1.944(6)	C9	C10	1.409(10)
Fe1	N2 ⁴	1.944(6)	C9	C4	1.394(10)
Fe1	N3 ⁴	1.987(6)	C9	C8	1.411(10)
Fe1	N3	1.987(6)	C6	C5	1.355(11)
N1	C1	1.137(9)	C4	C5	1.410(11)
N2	C2	1.124(9)			

¹-X,1-Y,-Z; ²-1+X,+Y,+Z; ³1-X,1-Y,-Z; ⁴1-X,2-Y,-Z

Bond Angles for 2 (LS).

Atom Atom Atom			Angle/°	Atom Atom Atom			Angle/°
C1	Pt1	$C1^1$	180.0	C1	N1	Fe1	171.4(6)
C1	Pt1	C2 ²	90.3(3)	C2	N2	Fe1	172.3(6)
C1	Pt1	C2 ³	89.7(3)	N1	C1	Pt1	175.5(6)
$C1^1$	Pt1	C2 ³	90.3(3)	N2	C2	Pt1 ⁵	174.6(6)
$C1^1$	Pt1	C2 ²	89.7(3)	N4	N3	Fe1	117.1(4)
C2 ³	Pt1	C2 ²	180.0	C10	N3	Fe1	123.4(5)
N1	Fe1	N1 ⁴	180.0(3)	C10	N3	N4	119.4(6)
N1	Fe1	N3 ⁴	88.4(2)	N4	C3	C4	126.7(7)
N1 ⁴	Fe1	N3	88.4(2)	C3	N4	N3	117.4(6)
N1	Fe1	N3	91.6(2)	C8	C7	C6	120.3(8)
N1 ⁴	Fe1	N3 ⁴	91.6(2)	C10	C9	C8	124.2(7)
$N2^4$	Fe1	N1 ⁴	89.4(2)	C4	C9	C10	116.3(7)
N2	Fe1	N1	89.4(2)	C4	C9	C8	119.5(7)
N2	Fe1	N1 ⁴	90.6(2)	C5	C6	C7	120.7(8)
$N2^4$	Fe1	N1	90.6(2)	N3	C10	C9	124.7(6)
N2	Fe1	N2 ⁴	180.0	C9	C4	C3	115.2(7)
N2	Fe1	N3	88.5(2)	C9	C4	C5	120.2(7)
N2	Fe1	N3 ⁴	91.5(2)	C5	C4	C3	124.6(7)
$N2^4$	Fe1	N3 ⁴	88.5(2)	C6	C5	C4	119.7(8)
N2 ⁴	Fe1	N3	91.5(2)	C7	C8	C9	119.6(8)
N3	Fe1	N3 ⁴	180.0				

¹-X,1-Y,-Z; ²-1+X,+Y,+Z; ³1-X,1-Y,-Z; ⁴1-X,2-Y,-Z; ⁵1+X,+Y,+Z

Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 2 (LS).

Atom	x	У	Z	U(eq)
H3	1614.92	8241.19	5018.44	34
H7	8608.19	5993.13	6496.88	43
H6	5522.84	5754.09	8075.05	40
H10	7538.33	8749.65	1977.31	23
H5	2914.7	6798.25	7204.17	37
H8	9051.51	7289.07	4037.31	34

Aromatic H refined with riding coordinates