Supplementary Information

Three metal-organic framework isomers of different pore sizes for selective CO₂ adsorption and isomerization studies

Rui Zhang,^a Jv-Hua Huang,^a De-Xian Meng,^a Fa-Yuan Ge,^b Li-Fei Wang,^a Yong-Kai Xv,^a

Xing-Gui Liu,^a Mei-Mei Meng,^a Zhen-Zhong Lu,^{*a} He-Gen Zheng,^{*b} Wei Huang^{*a,c}

- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China.
- b. State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
- c. Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU),
 127 West Youyi Road, Xi'an 710072, China

	1	2	3	
Empirical formula	C ₂₀ H ₁₂ CdN ₆ O ₄ , 0.5[C ₃ H ₇ NO]	$C_{20}H_{12}CdN_6O_4$	$C_{20}H_{12}CdN_6O_4$	
Formula weight	549.30	512.76	512.76	
Temp. (K)	290	290	293	
MoKa	0.71073	0.71073	0.71073	
Crystal system	Orthorhombic	Orthorhombic	Hexagonal	
Space group	Рсса	Pbam	P6/m	
<i>a</i> (Å)	14.374(2)	21.073(1)	25.357(1)	
B (Å)	15.700(2)	13.611(1)	25.357(1)	
<i>C</i> (Å)	20.961(3)	15.691(1)	15.796(1)	
a (°)	90	90	90.00	
β(°)	90	90	90.00	
γ (°)	90	90	120.00	
$V(Å^3)$	4730.6(9)	4500.8(6)	8795.6(9)	
Z	8	4	6	
$\rho_{\rm calc}$ (g/cm ³)	1.542	0.757	0.581	
μ (mm ⁻¹)	0.966	0.503	0.386	
Final R indices(R1)	0.0414	0.0378 0.0331		
[I>2σ(I)] wR2	0.1159	0.1175	0.0595	
GOOF	1.078	1.030	1.056	

Table 1. Crystal and Structure Refinement Data for compound $\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$

Figure S1. The coordination environment of Cd(II) and the Cd-O bond lengh (Å) in 1 (nitrogen atoms are omitted for clarity, Cd, green; C, dark grey; O, red).

Figure S2. The coordination environment of Cd(II) and the Cd-O bond lengh (Å) in **2** (nitrogen atoms are omitted for clarity, Cd, green; C, dark grey; O, red).

Figure S3. The coordination environment of Cd(II) and the Cd-O bond lengh (Å) in **3** (nitrogen atoms are omitted for clarity, Cd, green; C, dark grey; O, red).

Table S1. The comparison of the Cd-O bond lengths and the acute and obtuse angles of the 'X' unit[§] in 1, 2 and 3.

	Cd-O bo	nd length	Cd-O bo	nd length	involving	Acute angle	Obtuse angle
MOF	involving	chelating	chelating a	nd bridging	carboxylate	of "X"§ (°)	of "X"§ (°)
	carboxylate group (Å)		group (Å)				
1	2.334(1)	2.427(1)	2.256(1)	2.317(1)	2.752(1)	69	111
2	2.304(1)	2.429(1)	2.329(1)	2.349(1)	2.549(1)	66	114
3	2.530(1)	2.273(1)	2.223(1)	2.238(1)	2.832(1)	60	120

[§] The Cd₂(carboxylate)₄ units are simplified schematically as red "**X**" (see Figure 2 in main text).

Figure S4. Side view showing the pore structures of 1 ($Cd_2(tp)_2$ layer, red; Cd, green; C/H, grey; N, light blue).

Figure S5. Side view showing the pore structure of **2** ($Cd_2(tp)_2$ layer, red; Cd, green; C/H, grey; N, light blue).

Figure S6. Side view showing the pore structure of **3** ($Cd_2(tp)_2$ layer, red; Cd, green; C/H, grey; N, light blue).

Figure S7. Collected PXRD of as-synthesized phase-pure sample of **1** and as-synthesized mixture of **2** and **3**.

Figure S8. TG result of 1.

Figure S9. Isotherms of CO_2 , CH_4 and N_2 for 1 at 273K.

Figure S10. Isotherms of CO_2 , CH_4 and N_2 for 1 at 298K.

IAST Analysis of the selectivity data in 1.

Ideal adsorbed solution theory (IAST)¹ was used to determine the selectivity factor, *S*, for binary mixtures using pure component isotherm data. The selectivity factor, *S*, is defined according to Equation 1 where *xi* is the amount of each component adsorbed as determined from IAST and *yi* is the mole fraction of each component in the gas phase at equilibrium. The IAST adsorption selectivities were calculated for CO_2/N_2 binary mixtures of compositions (50:50) at 273 K and a total pressure of 1.0 bar.

$$S = \frac{x_1 / y_1}{x_2 / y_2} \tag{1}$$

Figure S11. Variation of isosteric heat of adsorption of CO_2 for 1.

Figure S12. Comparison of simulated PXRD patterns of 1, 2 and 3 with peaks indexed.

References

1 A. L. Myers and J. M. Prausnitz, *AIChE J.*, 1965, **11**, 121.