Supporting Information

Green Synthesis of Ag/TiO₂ Composites Coated Porous Vanadophosphates with Enhanced Visible-Light Photo-degradation and Catalytic Reduction Performance for Removing Organic Dyes

Shuang Wang, ^a Yujie Wang, ^a Linghan Li, ^a Lei Li, ^a Guoyuan Fu, ^a Rui Shi, ^a Xinyu Zou, ^a Zhijuan Zhang, ^a Fang Luo^{*, a}

[†] Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China

Corresponding authors

Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China

E-mail address: luof746@nenu.edu.cn

Postal address: Northeast Normal University, Renmin Street No. 5268, Changchun, Jilin Province, 130024, P. R. China

Fig. S1. Polyhedral view of the inorganic framework of VPO.

Fig. S2. SEM images of prepared VPO@TiO₂ composies at amount of (a) 60 μ l TBT (b) 100 μ l TBT (c) 200 μ l TBT (d) 400 μ l TBT.

Fig. S3. The physical map of (a) single VPO water-soluble and (b) the prepared VPO@TiO₂ composite.

Fig. S4. EDX of (a) 2.6%Ag/VPO@TiO₂; (b) 6.82%Ag/VPO@TiO₂; (c) 8.18%Ag/VPO@TiO₂; (d) 14.28%Ag/VPO@TiO₂, respectively.

Fig. S5. (a) SEM images of pure VPO; (b) SEM images of Ag/VPO composite.

Fig. S6. TEM images of 6.82%Ag/VPO@TiO₂.

Fig. S7. Elemental mapping of 6.82%Ag/VPO@TiO₂.

Fig. S8. N₂ adsorption-desorption isotherms of TiO₂, VPO@TiO₂ and 6.82%Ag/VPO@TiO₂, respectively.

Fig. S9. Photocatalytic degradation profiles of MB for 6.82%Ag/VPO@TiO₂ composite under visible light irradiation.

Tab S1. Visible degradation rate constants k (sec⁻¹) for the reported Ag/TiO₂ type and the 6.82%Ag/VPO@TiO₂ composite

Catalysts	Catalyst	Rate constants (k)	Reaction	Reference	
	used		time		
Ag@TiO ₂	0.5 mM	$0.20519 \times 10^{-3} \text{ sec}^{-1}$	240 min	1	
Ag@TiO ₂ /Pani	2 mg	0.6111×10 ⁻⁴ sec ⁻¹	360 min	2	
Ag(1)/TiO ₂ films	-	0.4833×10 ⁻⁴ sec ⁻¹	30 min	4	
TiO2/Ag films	15×20 mm	0.265×10-3 sec-1	180 min	5	
BN-Ag/TiO ₂	0.4 g L ⁻¹	0.775×10 ⁻³ sec ⁻¹	80 min	6	
Ag:TiO ₂	-	0.667×10 ⁻⁴ sec ⁻¹	200 min	7	
Ag/TiO ₂ /graphene	100 mg	0.1167×10 ⁻² sec ⁻¹	60 min	8	
6.82%Ag/VPO@TiO	30 mg	0.2231×10 ⁻³ sec ⁻¹	75 min	This work	
2					

Fig. S10. (a) SEM images of 8.18%Ag/VPO@TiO2; (b) SEM images of 14.28%Ag/VPO@TiO2.

Fig. S11 First-order kinetic plots for the photodegradation of MB by different samples.

Fig. S12. UV-visible absorption spectra of 4-NP with and without the presence of NaBH₄.

Fig. S13. UV-Vis absorption spectra of 4-NP with only the addition of $NaBH_4$ for 40 min.

Fig. S14. UV-Vis absorption spectra of 4-NP with TiO_2 as a catalyst.

Fig. S15. UV-Vis absorption spectra of p-nitrophenol with VPO@TiO2 as catalyst.

Fig. S16. PXRD patterns of 6.82%Ag/VPO@TiO₂ composites after soaking for one day at pH = 1, 3, 9, 14 respectively.

Fig. S17. The PL spectra of different samples.

Tab S2. First-Order Rate Constants of 4-NP Reduction Catalyzed by Different Ag nanoparticles loading catalysts ^a.

Entry	Catalyst (mg)	NaBH ₄ (µL)	^b Rate constants k(s) ⁻¹	Time (s)
1	Ag/TiO ₂	300	0.012	240
2	2.6%Ag/VPO@TiO2	300	0.16	100
3	6.82%Ag/VPO@TiO ₂	300	0.95	40
4	8.18%Ag/VPO@TiO ₂	300	0.09	150
5	14.28%Ag/VPO@TiO 2	300	0.03	180

^aReaction conditions: p-nitrophenol (0.1 mM), catalyst (30 mg), NaBH₄ (0.05 mM).

^{*b*}The rate constants was calculated as the dynamic behavior over a 40 s.

Tab. S3. Comparison of particle size, contents of Ag (µg), quality of 4-NP and catalytic performance for 4-NP

Catalysts	Particle size (nm)	Quality of 4- NP (mmol)	Catalyst used	Reduction time	Reference
Cu ₂ O-Ag	18	1 × 10 ⁻⁴	1 mg	7min	1

reduction presente	d in	literatures	and	the	present	work
--------------------	------	-------------	-----	-----	---------	------

Ag-coated PVDF nanofiber	66 ± 10	4.8×10 ⁻⁴	-	60 min	2
Ag-SiO ₂	12	5	0.2 mg	15 min	3
Fe ₃ O ₄ @Ag	52.2	5	0.4 mg	6 min	4
Ag/Fe ₃ O ₄ @C	10	0.2	20 mg	10 min	5
Ag-γ-Fe ₂ O ₃	7.8	10	28.77 mM	13 min	6
Ag@CeO ₂	180	1	5 mg	550 s	7
6.82%Ag/VPO@TiO	10-25	0.1	5 mg	40 s	This work

Fig. S18. The photodegradated mechanism of MB molecules by the VPO@TiO₂ composite under visible light irradiation.

Fig. S19. MB removal with 6.82%Ag/VPO@TiO₂ composites.

Fig. S20. Schematic illustrati0on for the catalytic reduction of 4-NP molecules with the 6.82%Ag/VPO@TiO₂ composite.

Reference

- 1. A.K. Sasmal, J. Pal, R. Sahoo, P. Kartikeya, S. Dutta, T. Pal, J. Phys. Chem. C 120 (2016) 21580-21588.
- 2. L. Miao, G. Liu, J. Wang, ACS Appl. Mater. Interfaces 11 (2019) 7397-7404.
- Z.-Y. Xiao, S.-X. Huang, S.-R. Zhai, B. Zhai, F. Zhang, Q.-D. An, J. Sol-Gel Science and Technology, 75 (2015) 82-89.
- 4. G. Sharma, P. Jeevanandam, Eur. J. Inorg. Chem. 2013 (2013) 6126-6136.
- 5. M. Zhu, C. Wang, D. Meng, G. Diao, J. Mater. Chem. A 1 (2013) 2118-2125.
- 6. M. Kaloti, A. Kumar, N.K. Navani, Green Chemistry 17 (2015) 4786-4799.
- 7. Y.-Y. Wang, Y. Shu, J. Xu, H. Pang, CrystEngComm 19 (2017) 684-689.