Supplementary Information

Plasma-liquid synthesis of MoOx and WO₃ as potential photocatalysts

Anna Khlyustova, Nikolay Sirotkin, Anton Kraev, Valery Titov, and Alexander Agafonov

G. A. Krestov Institute of Solution Chemistry, Academicheskaja, str., 1, Ivanovo, 153045, Russia

I. Analysis of dyes solution after photocatalysis

The products of the destruction process were analyzed by gas chromatography-mass spectrometry (GC/MS) (Shimadzu GCMS QP2010 Ultra) in positive electrospray mode. Samples were extracted by organic solvents before analysis.

FIG. S1 Chromato-mass-spectrum of dyes solution after photocatalysis (destruction degree <100%)

Two kinetic models are analyzed and proved for all dyes adsorption. Figures S1-S2 (a-d) show the $ln(q_e-q_t)=f(t)$ and t/q_t versus t for MoO_x and WO₃, respectively.

FIG. S2 The pseudo-first (1) and pseudo-second (2) order kinetic models plots for the adsorption of MB (a), RhB (b), and RR6C (c) dyes on the MoO_x

FIG. S3 The pseudo-first (1) and pseudo-second (2) order kinetic models plots for the adsorption of MB (a), RhB (b), and RR6C (c) dyes on the WO₃

Figure S4 (a-b) presents the q_t versus $t^{1/2}$ for intraparticle diffusion model.

FIG. S4 Intraparticle diffusion model for adsorption of four dyes on MoO_x (a) and WO₃ (b)