Electronic Supplementary Information (ESI) for Journal of Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting Information For:

Post-Synthetic Modification of a Metal–Organic Framework with Chemodosimeter for Rapid Detection of Lethal Cyanide via Dual Emission

Rana Dalapati, Soutick Nandi and Shyam Biswas*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.

* To whom correspondence should be addressed. E-mail: sbiswas@iitg.ernet.in. Tel: (+)91-3612583309. Fax: (+)91-3612582349.

Materials and Methods:

The preparation of thieno[2,3-b]thiophene-2,5-dicarboxylic acid (H₂TDC) and 2-cyano-3-(pyren-1-yl)acrylic acid (CPAA) chemodosimeter was carried out by following literature protocols.^{1, 2} The ¹H NMR spectra of these ligands are shown in Figures S1-S2. All other reagent grade starting materials were used as received from the commercial suppliers. Perkin Elmer Spectrum Two FT-IR spectrometer was used to record fourier transform infrared (FT-IR) spectra in the region of 400-4000 cm⁻¹. The following indications are used to characterize absorption bands: very strong (vs), strong (s), medium (m), weak (w), shoulder (sh) and broad (br). Thermogravimetric analyses (TGA) were carried out with a Mettler-Toledo TGA/SDTA 851e thermogravimetric analyzer in a temperature range of 30-700 °C under air atmosphere at a heating rate of 5 °C min⁻¹. Ambient temperature X-Ray powder diffraction (XRPD) patterns were measured on a Bruker D2 Phaser X-ray diffractometer operated at 30 kV, 10 mA using Cu-K α (λ = 1.5406 Å). The nitrogen sorption isotherms up to 1 bar were recorded using a Quantachrome Autosorb iQ-MP gas sorption analyzer at -196 °C. Before the sorption measurements, the compounds were degassed for 12 h under dynamic vacuum at 120 °C. Steady state fluorescence studies were performed with a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer. DFT calculations were carried out with Gaussian 09 package using 6-31+G (d,p) basis set with B3LYP method.³

Figure S1. ¹H NMR spectrum of of H₂TDC ligand.

Figure S2. ¹H NMR spectrum of of CPAA ligand.

Figure S3. XRPD patterns of as-synthesized (a), methanol exchanged (b) and thermally activated (c) forms of 1.

Figure S4. XRPD patterns of 1' before (a) and after post-synthetic ligand exchange (b).

Figure S5. FT-IR spectra of as-synthesized 1 (red) and thermally activated 1' (black).

Figure S6. FT-IR spectra of P-1' before (black) and after (red) treatment with cyanide.

Figure S7. ¹H NMR spectra of **1'** (a) and **P-1'** (b) after framework digestion in K_3PO_4/D_2O . In ¹H NMR spectrum of digested **P-1'**, presence of the new peaks were observed for the pyrene protons (blue shaded area) along with the proton peaks of H_2TDC ligand (red shaded area).

Digestion protocol: 10 mg of MOF sample was added to 0.5 mL of DMSO- d_6 . To this solution was added 0.3 mL of saturated K₃PO₄ in D₂O. After shaking for 10 min, the MOF sample was dissolved and the organic phase was collected and analyzed by ¹H NMR spectroscopy.

Figure S8. ¹H NMR spectrum of **P-1'** after digestion in K_3PO_4/D_2O . To calculate the percent of conversion, the peaks corresponding to H_2TDC ligand was set to an integration of 1 and all new peaks were integrated accordingly. For **P-1'**, these new peaks are all approx. ~0.30 with respect to protons of H_2TDC ligand, corresponding to ~23% incorporation of CPAA ligand in the framework.

Figure S9. TG curves of as-synthesized **1** (black) and activated **1'** (red) recorded in an air atmosphere in the temperature range of 25-700 °C with a heating rate of 5 °C min⁻¹.

Figure S10. TG curves of **P-1** recorded in an air atmosphere in the temperature range of 25-700 °C with a heating rate of 5 °C min⁻¹.

Figure S11. FE-SEM images of 1' (a, b) and P-1'(c, d) in different magnifications.

Figure S12. N₂ adsorption (solid symbols) and desorption (empty symbols) isotherms of 1' (weed green squares) and **P-1'** (black circles) measured at -196 °C.

Figure S13. Hydrolytic stability of P-1' in different pH media.

Figure S14. Structure of CPAA probe and its different potential sites.

Figure S15. Change in the fluorescence intensity of P-1' upon addition of 2 mM aqueous solution (150 μ L) of various anions.

Figure S16. Time-dependent fluorescence enhancement of **P-1'** at 433 nm upon addition of different concentrations of CN⁻ ion.

Figure S17. Change in the fluorescence intensity of **P-1'** upon addition of 2 mM CN⁻ solution (150 μ L) in presence of other competitive anions (150 μ L).

Concentration of CN⁻ (mM) Figure S18. Change in the fluorescence intensity of P-1' as a function of CN⁻ concentration.

Sl No.	Sensor Material	Type of material	Sensing Medium	LOD	Ref.
1	P-1'	MOF	THF/ H ₂ O	0.35 µM	this work
2	CAU-10-N ₂ H ₃	MOF	Water	0.48 µM	4
3	M-ZIF-90	MOF	DMSO/ H ₂ O	2 μΜ	5
4	carbazole- functionalized Zr(IV) MOF	MOF	Water	0.14 μΜ	6
5	Bio-MOF-1⊃DAAC	MOF	HEPES buffer	5.2 ppb	7
6	Tb-ADP-Bipy MOF	MOF	Water	30 nM	8
7	PAT-TFBE	gel	Water	1.82 µM	9
8	BP	Benzo-pyrylium– pheno-thiazine conjugate	CH ₃ CN/H ₂ O	0.13 μΜ	10
9	NBD-SSH-Cu ²⁺	peptide-based ensemble	Water	24.9 nM	11
10	pyridyl azo-based chemosensor 2	gel	Sol-gel medium	9.36 µM	12
11	pyridinium-fused	Chemo-dosimeter	THF/ H ₂ O	54 nM	13

Table S1. Comparison of the various existing fluorescent materials for the sensing of CN⁻.

	pyridinone iodide				
12	3T-2CN	Oligo-thiophene chemo-sensor	DMSO/ H ₂ O	0.19 μΜ	14
13	AuAgNCs@ ew	bimetallic gold–silver nanoclusters	Water	0.138 μM	15
14	{Ru ^{II} (^t Bubpy)(CN) ₄ - [Cu ^{II} (dien)] ₃ }(ClO ₄) ₂	trinuclear hetero- bimetallic Ru(II)-Cu(II) complex	DMF/ H ₂ O	1.2 μΜ	16
15	receptor 1	DMN conjugated benzo-thiazole	DMF/H ₂ O	0.16 µM	17
16	PNA⊃GBP·I ₂	Supra-molecular polymer	DMSO-H ₂ O	41 nM	18

Figure S19. XRPD patterns of P-1' before (a) and after (b) cyanide sensing.

Figure S20. Suppression of ICT (intramolecular charge transfer) due to addition of cyanide ion to the CPAA probe.

Figure S21. ¹H NMR spectrum of (a) **P-1'** and (b) cyanide treated **P-1'** digested in K₃PO₄/D₂O. The appearance of the new peak at 5.79 ppm in the ¹H NMR spectrum of cyanide treated **P-1'** supports the proposed nucleophilic addition of cyanide to the vinyl group of the pyrene moiety.

Figure S22. ¹H NMR spectrum of cyanide treated **P-1'** after digestion. The peaks corresponding to H₂TDC ligand were set to an integration of 1 and all new peaks were integrated accordingly. For cyanide treated **P-1'**, the new peak (H_b) at 5.79 ppm is approx. 0.16 with respect to protons of H₂TDC ligand. Due to nucleophilic attack of cyanide, the integration value of vinylic proton (H_a) decreases from ~ 0.30 to ~0.14. Hence, percentage conversion of incorporated CPAA ligand to its cyanide adduct is ~53% under sensing conditions.

References:

- 1. W.-W. He, G.-S. Yang, Y.-J. Tang, S.-L. Li, S.-R. Zhang, Z. M. Su and Y.-Q. Lan, *Chem. Eur. J.*, 2015, **21**, 9784-9789.
- 2. A. Kathiravan, M. Panneerselvam, K. Sundaravel, N. Pavithra, V. Srinivasan, S. Anandand and M. Jaccob, *Phys. Chem. Chem. Phys.*, 2016, **18**, 13332-13345
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision A.1.; Gaussian, Inc.: , Wallingford, CT*, 2009.
- 4. R. Dalapati, S. Nandi, H. Reinsch, B. K. Bhunia, B. B. Mandal, N. Stock and S. Biswas, *CrystEngComm*, 2018, **20**, 4194-4201.

- A. Karmakar, N. Kumar, P. Samanta, A. V. Desai and S. K. Ghosh, *Chem. Eur.J.*, 2016, 22, 864 -868.
- 6. A. Das and S. Biswas, *Sens. Actuators, B*, 2017, **250**, 121-131.
- 7. A. Karmakar, B. Joarder, A. Mallick, P. Samanta, A. V. Desai, S. Basu and S. K. Ghosh, *Chem. Commun.*, 2017, **53**, 1253-1256.
- 8. L. Wang, S. Wang and Y. Chen, *Microchim. Acta*, 2017, **184**, 4597-4602.
- 9. H. Fang, G. Cai, Y. Hu and J. Zhang, *Chem. Commun.*, 2018, **54**, 3045-3048.
- 10. S. Mondal, S. S. Ali, S. Manna, K. Maiti, M. R. Uddin, S. Mandal, D. Mandal and A. K. Mahapatra, *New J. Chem.*, 2017, **41**, 12581-12588.
- 11. K. H. Jung and K.-H. Lee, Anal. Chem., 2015, 87, 9308-9314.
- 12. A. Panja and K. Ghosh, *ChemistrySelect*, 2018, **3**, 1809-1814.
- 13. J. Li, J. Gao, W. W. Xiong, P. Z. Li, H. Zhang, Y. Zhao and Q. Zhang, *Chem. Asian J.*, 2014, **9**, 121-125.
- 14. L. Lan, T. Li, T. Wei, H. Pang, T. Sun, E. Wang, H. Liu and Q. Niu, *Spectrochim. Acta, Part A*, 2018, **193**, 289-296.
- 15. L. Tian, Y. Li, T. Ren, Y. Tong, B. Yang and Y. Li, *Talanta*, 2017, **170**, 530-539.
- 16. C.-F. Chow, M. H. Lam and W.-Y. Wong, *Inorg. Chem.*, 2004, **43**, 8387-8393.
- 17. K. Keshav, P. Torawane, M. K. Kumawat, K. Tayade, S. K. Sahoo, R. Srivastava and A. Kuwar, *Biosens. Bioelectron.*, 2017, **92**, 95-100.
- 18. Q. Lin, K.-P. Zhong, J.-H. Zhu, L. Ding, J.-X. Su, H. Yao, T.-B. Wei and Y.-M. Zhang, *Macromolecules*, 2017, **50**, 7863-7871.