Supporting Information for:

Coinage metal tris(dialkylamido)imidophosphorane complexes as transmetallation reagents for cerium complexes

Luis M. Aguirre Quintana,^a Ningxin Jiang,^a John Bacsa,^a and Henry S. La Pierre^{*ab}

^a Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States

E-Mail: hsl@gatech.edu

^b Nuclear and Radiological Engineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States

Table of Contents

General Considerations	2
Synthetic Procedures	3
NMR Spectra of Reported Compounds	7
Crystallographic Analyses	25
References	46

General Considerations

Unless otherwise stated, all reagents were obtained from commercial suppliers, and the syntheses and manipulations were conducted under argon with exclusion of dioxygen (O_2) and H_2O using Schlenk techniques or in an inert atmosphere box (Vigor) under a dinitrogen (<0.1 ppm O₂/H₂O) atmosphere. All glassware was stored in an oven over-night (>8 h) at a temperature of ca. 160°C prior to use. Celite and molecular sieves were dried under vacuum at a temperature >250 °C for a minimum of 24 h. C₆D₆ was stored over 3 Å molecular sieves and then vacuum-transferred from purple sodium/benzophenone prior to use. Diethyl ether, n-pentane, n-hexane, benzene, toluene, and tetrahydrofuran (THF) were purged with UHP-grade argon (Airgas) and passed through columns containing Q-5 and molecular sieves in a solvent purification system (JC Meyer Solvent Systems). All solvents in the glovebox were stored in bottles over 3 Å molecular sieves. The reagents Cel₃(THF)₄, K[NP(pip)₃] and K[NP*] were prepared by published procedures.¹⁻³ NMR spectra were obtained on a Bruker Advance III 400 MHz spectrometer at 298 K, unless otherwise noted. ¹H, ¹³C, and ³¹P NMR chemical shifts are reported in δ , parts per million. All NMR samples were prepared in C₆D₆ (unless otherwise noted) and ¹H NMR are references to the residual ¹H resonances of C₆D₆.⁴ ¹³C NMR are referenced to the ¹³C resonance of the C₆D₆.⁴ The peak position is listed, followed by the peak multiplicity, integration value, and proton assignment, where applicable. The multiplicity and shape are indicated by one or more of the following abbreviations: s (singlet); d (doublet); t (triplet); g (guartet); m (multiplet); br (broad). Elemental analyses were determined at Robertson Microlit Laboratories (Ledgewood, NJ). Infrared (IR) samples were taken on a Bruker ALPHA FTIR spectrometer from 400 to 4000 cm⁻¹. IR samples were prepared as Nujol mulls sandwiched between two KBr plates. The peaks are listed in wavenumber [cm⁻¹] and intensity by using the following abbreviations: vw (very weak); w (weak); m (medium); s (strong); vs (very strong); br (broad). Crystals suitable for X-ray diffraction were covered in paratone oil in a glove box and transferred to the diffractometer in a 20-mL capped vial. Crystals were mounted on a loop with paratone oil on a Bruker D8 VENTURE diffractometer. The crystals were cooled and kept at T = 100(2) K during data collections. The structures were solved with the ShelXT structure solution program using the Intrinsic Phasing solution method and by using Olex2 as the graphical interface.^{5, 6} The model was refined with version 2014/7 of XL using Least Squares minimization.⁷ Structures were visualized in Mercury and graphics were generated with POV-rav.^{8,9}

Complexes **1-Cu**, **1-Ag**, **2-Cu**, and **2-Ag** were found to be stable to light after isolation and not special precautions to exclude light were taken to store them (except to be placed in the freezer when not in use) or in subsequent reactions.

Synthetic Procedures

Synthesis of 1-Cu

Inside a glovebox, 2 mL of THF was added to a 20 mL scintillation vial charged with CuCl (0.096 g, 0.952 mmol) and a stir bar. A solution of K[PN*] (0.311 g, 0.952 mmol) in 12 mL of THF was added and the reaction mixture was stirred for 24 hours in the absence of light. The mixture was filtered through a pipet packed with glass filter paper and Celite. The filtrate was reduced in vacuo to a residue and triturated three times with 2-3 mL of pentane. The residue was then extracted into approximately 10 mL of THF and filtered through pipet packed with glass filter paper and Celite. The filtrate was then concentrated in vacuo until saturated and placed in the freezer at -35 °C for 24 hours, during which time, colorless crystals formed. Decantation and removal of volatiles yielded the title compound in 62% yield (0.207 g). The product was recrystallized from THF at -35 °C to provide X-ray quality crystals. ¹H NMR (400.13 MHz, C₆D₆): δ 3.51(q, 4H), 3.13 (m, 2 H), 2.90 (m, 2 H), 1.56 (s, 18 H), 1.25 (t, 6 H). ³¹P{¹H} NMR (161.98 MHz, C₆D₆): δ 15.41 (s). ¹³C NMR (100.61 MHz, C₆D₆): δ 52.22 (s), 40.59 (d), 40.27 (s), 29.04 (s), 13.45 (s). IR (cm⁻¹): v 1267 (m), 1251 (m), 1211 (s), 1190 (s), 1163 (m), 1152 (s), 1094 (w), 1056(s), 1029 (s), 978 (m), 932 (m), 869 (m), 800 (m), 771 (vw), 706 (s), 638 (w). Elem. Anal. Found (calculated) for C₅₆H₁₂₈Cu₄N₁₆P₄: C 45.75 (47.91) H 8.48 (9.19), N 14.76 (15.96). Elemental percentages consistently low on multiple burns.

Synthesis of 1-Ag

Inside a glovebox, 2 mL of THF and a stir bar were added to a 20 mL scintillation vial charged with AgI (0.223 g, 0.949 mmol). A solution of K[PN*] (0.310 g, 0.949 mmol) in 12 mL of THF was added and the mixture allowed to stir for 24 hours in the absence of light. The mixture was filtered through a pipet packed with glass filter paper and Celite. The filtrate was reduced in vacuo to a residue and triturated three times with 2-3 mL of pentane. The residue was then extracted into approximately 10 mL of THF and filtered through pipet packed with glass filter paper and Celite. The filtrate was then concentrated in vacuo until saturated and placed in the freezer at -35 °C for 24 hours, during which time, colorless crystals formed. Decantation and removal of volatiles vielded the title compound in 64% yield (0.240 g). The product was recrystallized from THF at -35 °C to provide X-ray quality crystals. ¹H NMR (400.13 MHz, C₆D₆): δ 3.40(sextet, 4H), 3.16 (m, 2 H), 2.91 (m, 2 H), 1.55 (s, 18 H), 1.26 (t, 6 H). ³¹P{¹H} NMR (161.98 MHz, C₆D₆): δ 18.10 (t). ¹³C NMR (100.61 MHz, C₆D₆): δ 52.29 (s), 40.95 (m), 40.79 (s), 28.97 (s), 14.07 (s). IR (cm⁻¹): v 2042 (vw), 1599(m), 1577 (m), 1304 (vw), 1262 (m), 1207 (s), 1180 (w), 1148 (w), 1115 (vw), 1093 (vw), 1049 (s), 1022 (s), 968 (m), 909 (m), 864 (vw), 790 (w), 676 (m). Elem. Anal. Found (calculated) for C₅₆H₁₂₈Ag₄N₁₆P₄: C 42.50 (42.54) H 7.96 (8.16), N 14.45 (14.17).

Synthesis of 2-Cu

Inside a glovebox, 2 mL of THF and a stir bar were added to a 20 mL scintillation vial charged with CuCl (0.031 g, 0.309 mmol). A solution of K[NP(pip)₃] (0.104 g, 0.309 mmol) in 8 mL of THF was added and the mixture stirred for 24 hours in the absence of light. The mixture was filtered through a pipet packed with glass filter paper and Celite. The filtrate was reduced *in vacuo* to a residue and triturated three times with 2-3 mL of pentane. The residue was then extracted into approximately 10 mL of THF and filtered through pipet packed with glass filter paper and Celite. The filtrate was then concentrated *in vacuo* until saturated and placed in the freezer at -35 °C for 24 hours, during which time, colorless crystals formed. Decantation and removal of volatiles yielded the title compound in 78% yield (0.087 g). ¹H NMR (400.13 MHz, C₆D₆): δ 3.33(br-s, 48H), 1.57 (br-s, 72 H). ³¹P{¹H} NMR (161.98 MHz, C₆D₆): δ 26.95 (s). ¹³C NMR (100.61 MHz, C₆D₆): δ 46.70 (s), 27.05 (d), 25.47 (s). IR (cm⁻¹): ν 2064 (m), 1332 (s), 1275 (m), 1259 (m), 1215 (s), 1200 (vw), 1161 (vs), 1120 (s), 1062 (vs), 1027 (m), 945 (vs), 854 (m), 835 (m), 809 (m), 671 (w), 628 (vw).Elem. Anal. Found (calculated) for C₆₀H₁₂₀Cu₄N₁₆P₄: C 49.09 (49.91) H 8.73 (8.38), N 14.79 (15.52).

Synthesis of 2-Ag

Inside a glovebox, 20 mL of THF and a stir bar were added to a 100 mL round-bottomed flask charged with Agl (0.751 g, 3.201 mmol). A solution of K[NP(pip)₃] (1.077 g, 3.201 mmol) in 40 mL of THF was added and the mixture was stirred for 24 hours in the absence of light. The mixture was filtered through a pipet packed with glass filter paper and Celite. The filtrate was reduced in vacuo to a residue and triturated three times with 10 mL of pentane. The residue was then extracted into approximately 40 mL of THF and filtered through pipet packed with glass filter paper and Celite. The filtrate was then concentrated in vacuo until saturated and placed in the freezer at -35 °C for 24 hours, during which time, colorless crystals formed. Decantation and removal of volatiles yielded the title compound in 72% yield (0.934 g). The product was recrystallized from THF at -35 °C to provide X-ray quality crystals. ¹H NMR (400.13 MHz, C₆D₆): δ 3.27(br-s, 48 H), 1.54 (brs, 72 H). ³¹P{¹H} NMR (161.98 MHz, C₆D₆): δ 29.13 (t). ¹³C NMR (100.61 MHz, C₆D₆): δ 46.60 (s), 27.09 (d), 25.40 (s). IR (cm⁻¹): v 1329 (s), 1274 (m), 1259 (m), 1217 (s), 1201 (vw), 1162 (vs), 1123 (s), 1108 (m), 1059 (vs), 1027 (m), 940 (vs), 854 (m), 833 (m), 809 (m), 798 (w), 666 (w), 582 (vw). Elem Anal. Found (calculated) for C₆₀H₁₂₀Ag₄N₁₆P₄: C 44.91 (44.46) H 7.32 (7.46), N 13.59 (13.82).

Synthesis of 1-Ce

Inside a glovebox, 2 mL of THF and a stir bar were added to a 20 mL scintillation vial charged with Cel₃(THF)₄ (0.231 g, 0.286 mmol). A solution of K[NP(pip)₃] (0.289 g, 0.858 mmol) in 10 mL of THF was added and the mixture was stirred for 24 hours. The mixture was filtered through a pipet packed with glass filter paper and Celite. The filtrate was reduced *in vacuo* to a residue and triturated three times with 2-3 mL of pentane. The residue was then extracted into approximately 10 mL of THF and filtered through pipet packed with glass filter paper and Celite. The filtrate was then concentrated *in vacuo* until saturated and placed in the freezer at -35 °C for 24 hours, during which time, colorless crystals formed. Decantation and removal of volatiles yielded the title compound in 91% yield (0.273 g). The product was recrystallized from pentane at -35 °C to provide X-ray guality crystals. ¹H NMR (400.13 MHz, C₆D₆): δ 10.91 (br-s), 3.98 (br-s), 3.10 (br-s), -3.30

(br-s), -5.64 (br-s), -19.73 (br-s). ${}^{31}P{}^{1}H$ NMR (161.98 MHz, C₆D₆): δ 143.50 (br-s), -18.52 (br-s). ${}^{13}C$ NMR (100.61 MHz, C₆D₆): δ 53.26 (s), 31.16 (s), 28.38 (s), 18.08 (s), 15.05 (s). IR (cm⁻¹): ν 1328 (w), 1310 (vw), 1259 (m), 1203 (s), 1167 (vs), 1125 (s), 1057 (vs), 1028 (m), 937 (vs), 853 (m), 834 (m), 810 (m), 800 (w), 704 (s), 665 (w), 562 (vw). Elem Anal. Elem Anal. Found (calculated) for C₉₀H₁₈₀Ce₂N₂₄P₆: C 51.73 (52.36) H 8.86 (8.79), N 15.32 (16.28).

Reaction of 2-Ag with 1-Ce (Synthesis of [Ce(NP(pip)₃)]₄ through Route A)

Inside a glovebox, 2 mL of THF and a stir bar were added to a 20 mL scintillation vial charged with **1-Ce** (0.105 g, 0.051 mmol). A solution of **2-Ag** (0.041 g, 0.025 mmol) in 10 mL of THF was added and the mixture was stirred for 24 hours. The mixture was reduced to a residue *in vacuo*, triturated three times with 3mL *n*-pentane, dissolved in 10 mL of *n*-pentane, and filtered through a pipet filter packed with glass filter paper and Celite. The filtrate was concentrated *in vacuo* and placed in the freezer at -35 °C for 24 hours, during which time, yellow crystals of the previously reported compound [Ce(NP(pip)₃)₄] grew (0.124 g, 92%). ³¹P{¹H} NMR (161.98 MHz, C₆D₆): δ -12.30 (s).³

Reaction of 2-Ag with Ce⁰ Shavings (Synthesis of [Ce(NP(pip)₃)]₄ through Route B) Inside a glovebox, 2 mL of THF and a stir bar were added to a 20 mL scintillation vial charged with fresh Ce⁰ shavings (0.013 g, 0.093 mmol). A solution of **2-Ag** (0.150 g, 0.093 mmol) in 11 mL of THF was added and the mixture was stirred for 48 hours. The mixture was dried *in vacuo*, triturated three times with 2 mL of *n*-pentane, dissolved in 10 mL of toluene, and filtered through a pipet filter packed with glass filter paper and Celite. The filtrate was concentrated *in vacuo* and placed in the freezer at -35 °C for 36 hours, during which time, yellow crystals of the previously reported compound [Ce(NP(pip)₃)₄] grew (0.025 g, 20% isolated yield, 23% spectroscopic conversion). ³¹P{¹H} NMR (161.98 MHz, C₆D₆): δ -12.30 (s).³

Reaction of 2-Cu with 1-Ce

Inside a glovebox, 2 mL of THF and a stir bar were added to a 20 mL scintillation vial charged with **1-Ce** (0.036 g, 0.018 mmol). A solution of **2-Cu** (0.009 g, 0.025 mmol) in 3 mL of THF was added and the reaction mixture was stirred for 24 hours. The mixture was filtered through a pipet packed with glass filter paper and Celite. The filtrate was reduced *in vacuo* to a residue and triturated three times with 2-3 mL of pentane. The residue was then extracted into approximately 6 mL of THF and filtered through pipet packed with glass filter paper and Celite. The filtrate was then reduced to a residue *in vacuo*. ³¹P{¹H} NMR spectrum revealed the presence of only **2-Cu** and **1-Ce**.

Reaction of 2-Cu with Ce⁰ Shavings

Inside a glovebox, 2 mL of THF and a stir bar were added to a 20 mL scintillation vial charged with fresh Ce⁰ shavings (0.006 g, 0.043 mmol. A solution of **2-Cu** (0.062g, 0.043 mmol) in 5 mL of THF was added and the mixture was stirred for 48 hours. The mixture was filtered through a pipet packed with glass filter paper and Celite. The filtrate was reduced *in vacuo* to a residue and triturated three times with 2-3 mL of pentane. The residue was then extracted into approximately 6 mL of THF and filtered through pipet

packed with glass filter paper and Celite. The filtrate was then reduced to a residue *in vacuo*. ³¹P{¹H} NMR spectrum revealed the presence of only **2-Cu**.

NMR Spectra of Reported Compounds

Figure S1. ¹H NMR of **1-Cu** in C₆D₆. C₆D₅H is noted as \$. Residual THF noted as *.

Figure S2. ${}^{31}P{}^{1}H$ NMR of 1-Cu in C₆D₆.

Figure S3. ¹³C NMR of **1-Cu** in C₆D₆. C₆D₅H is noted as \$. Residual THF noted as *. Inset shows a zoom-in of the observed signals for clarity.

Figure S4. ¹H NMR of **1-Ag** in C_6D_6 . C_6D_5H is noted as \$.

Figure S5. ${}^{31}P{}^{1}H$ NMR of 1-Ag in C₆D₆.

Figure S6. ¹³C NMR of **1-Ag** in C_6D_6 . C_6D_5H is noted as \$. Inset shows a zoom-in of the observed signals for clarity.

Figure S7. ¹H NMR of 2-Cu in C_6D_6 . C_6D_5H is noted as \$. Residual THF noted as *.

Figure S8. ${}^{31}P{}^{1}H{}$ NMR of **2-Cu** in C₆D₆.

Figure S9. ¹³C NMR of **2-Cu** in C₆D₆. C₆D₅H is noted as \$. Residual THF noted as *. Inset shows a zoom-in of the observed signals for clarity.

Figure S10. ¹H NMR of **2-Ag** in C_6D_6 . C_6D_5H is noted as \$. Residual THF noted as *. Residual Et₂O noted as #.

Figure S11. ${}^{31}P{}^{1}H$ NMR of 2-Ag in C₆D₆.

Figure S12. ¹³C NMR of **2-Ag** in C_6D_6 . C_6D_5H is noted as \$. Inset shows a zoom-in of the observed signals for clarity.

Figure S13. ¹H NMR of **1-Ce** in C₆D₆. Peak of residual C₆D₅H noted as \$. Residual pentane noted as *.

Figure S14. ${}^{31}P{}^{1}H$ NMR of 1-Ce in C₆D₆.

Figure S15. ¹³C NMR of **1-Ce** in C₆D₆. Peak of residual C₆D₅H noted as \$. Residual pentane noted as *. Inset shows a zoom-in of the observed signals for clarity.

Figure S16. ³¹P{¹H} NMR of $[Ce(NP(pip)_3)_4]$ in C_6D_6 . The $[Ce(NP(pip)_3)_4]$ was obtained from the reaction between **2-Ag** and **1-Ce**.

Figure S17. ³¹P{¹H} NMR of the reaction mixture from the reaction between **2-Ag** and Ce⁰ shavings in C₆D₆.

Figure S18. ³¹P{¹H} NMR of $[Ce(NP(pip)_3)_4]$ in C_6D_6 . The $[Ce(NP(pip)_3)_4]$ was obtained from the reaction between **2-Ag** and Ce^0 shavings.

Crystallographic Analyses

Figure S19. Molecular structure of **1-Cu** with thermal ellipsoids shown at 50% probability. An uncoordinated molecule of THF and H atoms are omitted for clarity.

Figure S20. Molecular structure of **1-Ag** with thermal ellipsoids shown at 50% probability and H atoms are omitted for clarity.

Figure S21. Molecular structure of **2-Ag** with thermal ellipsoids shown at 50% probability and H atoms are omitted for clarity.

Figure S22. Molecular structure of **1-Ce** with thermal ellipsoids shown at 50% probability and H atoms are omitted for clarity.

	1-Cu
	C240H548Cu16N64
Empirical Formula	O4P16
Formula Weight	5907.55
Temperature (K)	99.99
Crystal System	monoclinic
Space Group	P21/n
a/Å	13.463(2)
b/Å	22.899(4)
c/Å	24.461(4)
al °	90
βl °	93.561(7)
p/ o	90
Volume/Å3	7526(2)
Z	1
Ζ'	0.25
<i>р</i> (g/ст3)	1.303
μ(mm-1)	1.248
F(000)	3172.0
	0.324 x 0.108 x
Crystal Size/mm3	0.088
Radiation	$(\lambda = 0.71073)$
2θ range for data	(// 0.11010)
collection(°)	4.674 to 56.758
	-17 ≤ h ≤ 17, -30
Index Ranges	≤ K ≤30, -32 ≤ 1 < 32
Reflections Collected	74391
	18628 [Rint =
	0.0756, Rsigma
Independent Reflections	= 0.0731]]
ers	18628/31/805
Goodness-of-Fit on F2	1.014
Final R Indexes [I>= 2σ	R1=0.0451,
(I)]	wR2=0.0953
Final R Indexes [all data1	R1=0.0791, wR2=0.1123
Largest Diff. Peak/Hole/	WIX2-0.1120
(e Å3)	0.62/-0.79
Flack Parameter	-
Completeness to 2θ	99

 Table S1. Crystallographic Data and Structure Refinement for 1-Cu

Table S2: Bond Lengths in Å for 1-Cu.					
Atom	Atom	Length/Å			
Cu3	Cu2	2.6119(6)			
Cu3	Cu4	2.6703(6)			
Cu3	N5	1.856(2)			
Cu3	N9	1.857(2)			
Cu1	Cu2	2 6445(6)			
Cu1	Cu4	2 6321(6)			
Cu1	N1	1 865(2)			
Cu1	N13	1.868(2)			
	N5	1.869(2)			
Cu2	N1	1.862(2)			
	NQ	1.868(3)			
	N13	1.878(2)			
	N13	1.070(2) 1.5/1(2)			
	N2	1.541(2)			
	NZ NA	1.003(2)			
	IN 4 NO	1.071(3)			
	NJ NJ 2	1.707(2)			
P4	NIS N4E	1.539(2)			
P4	N15	1.703(3)			
P4	N16	1.678(2)			
P4	N14	1.665(3)			
P2	N5	1.541(3)			
P2	N/	1.701(3)			
P2	N8	1.672(2)			
P2	N6	1.664(2)			
P3	N9	1.540(2)			
P3	N10	1.670(3)			
P3	N11	1.687(3)			
P3	N12	1.684(3)			
N2	C3	1.469(3)			
N2	C2	1.458(4)			
N7	C19	1.485(4)			
N7	C22	1.463(4)			
N8	C24	1.476(4)			
N8	C23	1.459(4)			
N4	C11	1.493(4)			
N4	C10	1.461(4)			
N3	C5	1.492(4)			
N3	C9	1.462(4)			
N6	C16	1.464(4)			
N6	C17	1.469(4)			
N15	C47	1.491(4)			
N15	C51	1.463(4)			
N16	C53	1.484(4)			
N16	C52	1.452(4)			
N10	C30	1,453(4)			
N10	C31	1.469(4)			
N14	C44	1.466(4)			
N14	C45	1.465(4)			

Atom	Atom	Lenath/Å
N11	C33	1.490(4)
N11	C37	1,449(4)
N12	C39	1.485(4)
N12	C38	1 435(4)
C11	C14	1.400(4) 1.524(4)
C11	C12	1.52+(+) 1.538(1)
C11	C12	1.530(4)
C24	C13	1.530(4)
C24	027	1.550(4)
C24	025	1.551(4)
024	C20	1.554(4)
05	07	1.528(4)
C5	6	1.537(4)
05	60	1.535(4)
03	C4	1.516(4)
C19	C20	1.532(5)
C19	C011	1.530(5)
C19	C21	1.520(4)
C54	C53	1.530(4)
C30	C29	1.522(4)
C10	C9	1.509(4)
C53	C55	1.526(4)
C53	C56	1.526(4)
C16	C15	1.504(5)
C2	C1	1.527(4)
C33	C36	1.524(5)
C33	C35	1.530(5)
C33	C34	1.525(4)
C52	C51	1.520(4)
C23	C22	1.511(4)
C44	C43	1.519(5)
C47	C48	1.529(5)
C47	C50	1 525(5)
C47	C49	1 529(5)
C40	C39	1.529(5)
C45	C46	1 518(5)
C17	C18	1 518(5)
C39	C42	1 523(5)
C30	C41	1.525(5) 1.534(4)
C37	C38	1.00+(+)
C31	C30	1.403(5)
01	C52	1.490(3)
01	C60	1.370(7)
		1.481(8)
000	C29B	1.418(13)
060	C59A	1.088(13)
057	C58B	1.590(16)
057	C58A	1.463(14)
C29B	C58B	1.332(12)
C59A	C58A	1.331(12)

Table	S3 :	Bond	Angles	in °	for	1-Cu.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cu2	Cu3	Cu4	91.66(2)	C30	N10	C31	115.7(3)

N5	Cu3	Cu2	45.70(7)	C31	N10	P3	119.4(2)
N5	Cu3	Cu4	131.71(8)	C44	N14	P4	119.4(2)
N5	Cu3	N9	175.01(11)	C45	N14	P4	123.9(2)
N9	Cu3	Cu2	129.31(8)	C45	N14	C44	116.7(2)
N9	Cu3	Cu4	44.35(8)	C33	N11	P3	125.6(2)
Cu4	Cu1	Cu2	91 79(2)	C37	N11	P3	120.0(2) 111.3(2)
N1	Cu1	Cu2	44 75(8)	C37	N11	C33	117 1(3)
N1	Cu1		129 1/(8)	C30	N12	D3	1267(2)
N1	Cu1	N12	174 12(11)	C38	N12		120.7(2)
	Cul		174.13(11)	C30		F 3	113.0(2)
	Cul	Cuz	152.41(0)	0.30		039	119.0(3)
N 13	Cul	Cu4	45.52(8)	IN4		014	110.6(2)
Cu3	Cuz	Cui	88.683(19)	IN4		012	109.1(2)
N5	Cuz	Cu3	45.28(7)	N4		013	109.9(2)
N5	Cu2	Cu1	127.45(8)	C14	C11	C12	108.8(2)
N1	Cu2	Cu3	127.67(7)	C14	C11	C13	108.9(3)
N1	Cu2	Cu1	44.83(7)	C13	C11	C12	109.6(3)
N1	Cu2	N5	172.16(11)	N8	C24	C27	109.8(2)
Cu1	Cu4	Cu3	87.71(2)	N8	C24	C25	111.1(2)
N9	Cu4	Cu3	44.03(7)	N8	C24	C26	109.5(3)
N9	Cu4	Cu1	126.63(8)	C27	C24	C25	108.4(3)
N9	Cu4	N13	171.13(11)	C27	C24	C26	109.9(3)
N13	Cu4	Cu3	127.25(8)	C25	C24	C26	108.1(2)
N13	Cu4	Cu1	45.20(7)	N3	C5	C7	110.4(2)
N1	P1	N2	112.23(13)	N3	C5	C6	111.3(3)
N1	P1	N4	117.83(13)	N3	C5	C8	107.9(2)
N1	P1	N3	119.80(13)	C7	C5	C6	109.5(3)
N2	P1	N4	107.96(12)	C7	C5	C8	108.0(3)
N2	P1	N3	104.63(12)	C8	C5	C6	109.7(3)
N4	P1	N3	92.03(12)	N2	C3	C4	115.0(2)
N13	P4	N15	118 62(13)	N7	C19	C20	110.0(2)
N13	P4	N16	119.33(13)	N7	C19	C01I	108 7(2)
N13	P4	N14	112 45(13)	N7	C19	C21	111 8(3)
N16	P4	N15	91 99(12)	C01I	C19	C20	108 5(3)
N1/		N15	105 20(13)	C21	C10	C20	107.6(3)
N14	D1	N16	105.20(13)	C21	C19	C20	107.0(3) 110.2(3)
N 14	F4 D2	NTO NT	100.74(13)	021 N10	C19	C011	110.2(3)
N5 NE			119 20(12)		C30	029	113.0(3)
	P2	INO NG	110.20(13)	IN4 N4C	010	C9	104.0(2)
C/I	P2		112.37(13)	N 10	053	054	108.5(2)
IN8	P2	IN7	91.92(12)	N16	053	C55	111.1(2)
NO	PZ	IN7	105.41(13)	N16	053	C56	110.1(2)
N6	P2	N8	106.35(12)	C55	053	C54	108.5(3)
N9	P3	N10	112.53(14)	C56	C53	C54	109.7(3)
N9	P3	N11	119.77(14)	C56	C53	C55	108.9(3)
N9	P3	N12	118.25(14)	N3	C9	C10	104.9(2)
N10	P3	N11	103.98(14)	N6	C16	C15	114.4(3)
N10	P3	N12	107.74(14)	N2	C2	C1	114.6(3)
N12	P3	N11	92.03(12)	N11	C33	C36	110.9(3)
Cu3	N5	Cu2	89.03(11)	N11	C33	C35	110.4(3)
P2	N5	Cu3	144.99(15)	N11	C33	C34	108.5(3)
P2	N5	Cu2	125.89(14)	C36	C33	C35	109.0(3)
Cu3	N9	Cu4	91.62(11)	C36	C33	C34	108.3(3)
P3	N9	Cu3	141.78(17)	C34	C33	C35	109.6(3)
P3	N9	Cu4	126.19(15)	N16	C52	C51	105.7(2)
Cu2	N1	Cu1	90.42(10)	N8	C23	C22	105.6(2)
P1	N1	Cu1	126.57(15)	N7	C22	C23	104.6(2)
P1	N1	Cu2	142.20(16)	N14	C44	C43	114.4(3)
							、 /

C3	N2	P1	120.21(19)	N15	C47	C48	109.5(3)
C2	N2	P1	124.77(19)	N15	C47	C50	111.6(3)
C2	N2	C3	115.0(2)	N15	C47	C49	108.3(2)
C19	N7	P2	123.9(2)	C50	C47	C48	108.6(3)
C22	N7	P2	108.7(2)	C50	C47	C49	110.2(3)
C22	N7	C19	116.5(2)	C49	C47	C48	108.6(3)
C24	N8	P2	127.4(2)	N14	C45	C46	114.0(3)
C23	N8	P2	113.8(2)	N15	C51	C52	104.2(2)
C23	N8	C24	118.4(2)	N6	C17	C18	115.1(3)
Cu1	N13	Cu4	89.29(11)	N12	C39	C40	110.2(3)
P4	N13	Cu1	138.99(15)	N12	C39	C42	110.7(3)
P4	N13	Cu4	121.97(14)	N12	C39	C41	108.9(3)
C11	N4	P1	128.92(19)	C40	C39	C41	109.7(3)
C10	N4	P1	114.04(19)	C42	C39	C40	108.8(3)
C10	N4	C11	116.9(2)	C42	C39	C41	108.5(3)
C5	N3	P1	123.03(19)	N11	C37	C38	107.5(3)
C9	N3	P1	108.90(19)	N10	C31	C32	114.2(3)
C9	N3	C5	115.9(2)	N12	C38	C37	108.4(3)
C16	N6	P2	124.1(2)	C60	01	C57	109.5(5)
C16	N6	C17	115.9(2)	O1	C60	C59B	105.9(7)
C17	N6	P2	119.8(2)	O1	C60	C59A	100.5(6)
C47	N15	P4	123.24(19)	O1	C57	C58B	98.7(6)
C51	N15	P4	109.18(19)	C58A	C57	O1	105.5(7)
C51	N15	C47	115.8(2)	C58B	C59B	C60	106.2(12)
C53	N16	P4	127.4(2)	C59B	C58B	C57	105.6(11)
C52	N16	P4	113.74(19)	C58A	C59A	C60	107.5(10)
C52	N16	C53	118.8(2)	C59A	C58A	C57	106.5(11)
C30	N10	P3	124.8(2)				

	1-Ag
Empirical Formula	$C_{56}H_{128}Ag_4N_{16}P_4$
Formula Weight	1581.10
Temperature (K)	100.2
Crystal System	orthorhombic
Space Group	Pbcn
a/Å	18.3095(17)
b/Å	17.4338(17)
c/Å	26.753(2)
al °	90
ßlo	90
p/ o	90
Volume/Å3	8539.7(13)
Ζ	4
Ζ'	0.5
<i>р</i> (g/ст3)	1.230
μ(mm-1)	1.017
F(000)	3296.0
Crystal Size/mm3	0.268 x 0.246 x 0.24
Radiation	ΜοΚα (λ=0.71073)
2θ range for data	
collection(°)	4.436 to 61.016
	-24 ≤ 11 ≤ 20, -24 ≤ k ≤24,
Index Ranges	-36≤ 1 ≤ 38
Reflections Collected	91258
Indexedute Deflections	13006 [Rint = 0.0639,
Data/Restraints/Paramet	Rsigma = 0.040 Ij
ers	13006/912/724
Goodness-of-Fit on F2	1.080
Final R Indexes [I>= 2σ	R1=0.0703,
(I)] Einal B Indoxos (all	wR2=0.1844
datal	wR2=0.2160
Largest Diff. Peak/Hole/	
(e Å3)	2.15/-2.10
Flack Parameter	-
Completeness to 2θ	100

 Table S4. Crystallographic Data and Structure Refinement for 1-Ag

Atom	Atom	Length/Å
N1_1	P1_1	1.537(3)
N1_1	Ag1_5	2.074(8)
N1_1	Ag2_5	2.089(8)
P1_1	N2_1	1.695(3)
P1_1	N3_1	1.682(4)
P1_1	N4_1	1.672(4)
N2_1	C1_1	1.463(5)
N2_1	C3_1	1.493(5)
N3_1	C2_1	1.457(5)
N3_1	C7_1	1.483(5)
C1_1	C2_1	1.524(5)
C3_1	C4_1	1.548(6)
C3_1	C5_1	1.526(6)
C3_1	C6_1	1.527(6)
C7_1	C8_1	1.530(6)
C7_1	C9_1	1.544(7)
C7_1	C10_1	1.519(8)
N4_1	C11_1	1.470(5)
N4_1	C13_1	1.471(6)
C11_1	C12_1	1.465(8)
C13_1	C14_1	1.532(7)
N1_2	P1_2	1.537(3)
N1_2	Ag1_6	2.093(8)
N1_2	Ag2_6	2.029(8)
P1_2	N2_2	1.697(3)
P1_2	N3_2	1.683(4)
P1_2	N4_2	1.669(4)
N2_2	C1_2	1.462(5)
N2_2	C3_2	1.494(5)
N3_2	C2_2	1.456(5)
N3_2	C7_2	1.483(5)
C1_2	C2_2	1.524(5)
C3_2	C4_2	1.547(6)
C3_2	C5_2	1.526(6)
C3_2	C6_2	1.528(6)
C7_2	C8_2	1.531(6)
C7_2	C9_2	1.544(7)
C7_2	C10_2	1.519(8)
N4_2	C11_2	1.467(5)
N4_2	C13_2	1.468(6)
C11_2	C12_2	1.464(8)
C13_2	C14_2	1.532(7)
N1_3	P1_3	1.537(3)

Table S5: Bond Lengths in Å for 1-Ag.

Atom	Atom	Length/Å
N1 3	Ag1 6	2.162(7)
P1_3	N2_3	1.698(3)
P1_3	N3_3	1.681(4)
P1_3	N4_3	1.668(4)
N2_3	C1_3	1.463(5)
N2_3	C3_3	1.496(5)
N3_3	C2_3	1.457(5)
N3_3	C7_3	1.483(5)
C1_3	C2_3	1.525(5)
C3_3	C4_3	1.547(6)
C3_3	C5_3	1.525(6)
C3_3	C6_3	1.528(6)
C7_3	C8_3	1.531(6)
C7_3	C9_3	1.544(7)
C7_3	C10_3	1.519(8)
N4_3	C11_3	1.466(5)
N4_3	C13_3	1.468(6)
C11_3	C12_3	1.465(8)
C13_3	C14_3	1.532(7)
N1_4	P1_4	1.537(3)
N1_4	Ag1_5	2.040(6)
N1_4	Agz_5	2.067(7)
P1_4	N2_4	1.098(3)
P1_4	N3_4	1.001(4)
P1_4	N4_4	1.009(4)
N2_4		1.403(5)
NZ_4	C_{2}^{4}	1.490(5)
N3_4	CZ_4	1.430(3)
113_4	C_{2}^{-4}	1.403(5) 1.524(5)
C_{3}^{-4}	C_{4}	1.524(5)
C_{3}^{-4}	C_{5}^{-4}	1.525(6)
$C3_{4}$	C6_4	1.528(6)
C7 4	C8_4	1 531(6)
C7 4	C9 4	1.544(7)
C7 4	$C10^{-4}$	1.519(8)
N4_4	C11_4	1.468(5)
N4_4	C13_4	1.469(6)
C11 4	C12_4	1.465(8)
C13_4	C14_4	1.532(̀7)́
Ag1_5	$Ag2_5^1$	2.9804(5)
Ag1_5	Ag2_5	2.9773(5)
Ag1_6	Ag2_6	2.9773(5)

¹-X,+Y,1/2-Z

Table S6: Bond Angles in [°] for 1-Ag.

			U				
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle
P1_1	N1_1	Ag1_5	119.5(4)	C1_3	N2_3	C3_3	116.5(
P1_1	N1_1	Ag2_5	140.3(4)	C3_3	N2_3	P1_3	122.1(
Ag1_5	N1_1	Ag2_5	91.3(3)	C2 3	N3_3	P1_3	113.6(
N1_1	P1_1	N2_1	117.9(2)	C2_3	N3_3	C7_3	118.4(
N1_1	P1_1	N3_1	120.0(2)	C7_3	N3_3	P1_3	128.0(

N1_1	P1_1	N4_1	111.9(2)	N2_3	C1_3	C2_3	104.5(3)
N3_1	P1_1	N2_1	91.95(18)	N3_3	C2_3	C1_3	104.7(3)
N4_1	P1_1	N2_1	106.0(2)	N2_3	C3_3	C4_3	111.3(4)
N4 1	P1_1	N3_1	106.6(2)	N2_3	C3_3	C5_3	108.9(4)
C1_1	N2_1	P1_1	109.3(3)	N2_3	C3_3	C6_3	110.5(4)
C1_1	N2_1	C3_1	116.6(3)	C5_3	C3_3	C4_3	109.5(4)
C3_1	N2_1	P1_1	124.0(3)	C5 ⁻ 3	C3 ³	C6 ⁻ 3	108.2(4)
C2_1	N3_1	P1_1	113.8(3)	C6_3	C3_3	C4_3	108.4(4)
C2_1	N3 ⁻ 1	C7 ⁻ 1	117.9(4)	N3 ⁻ 3	C7 ⁻ 3	C8 ⁻ 3	111.1(4)
C7_1	N3 ⁻ 1	P1_1	128.3(3)	N3 ⁻ 3	C7 ⁻ 3	C9 ⁻ 3	108.8(4)
N2_1	C1_1	C2_1	104.1(3)	N3 ⁻ 3	C7 ⁻ 3	C10 3	109.7(4)
N3_1	C2_1	C1 ⁻ 1	104.9(3)	C8 ⁻ 3	C7 ⁻ 3	C9 $\overline{3}$	107.8(́4)́
N2_1	C3 ¹	C4 ¹	111.4(4)	C10 3	C7 ⁻ 3	C8 ⁻ 3	109.0(4)
N2_1	C3 ¹	C5_1	108.5(4)	C10_3	C7 ³	C9 ⁻ 3	110.4(5)
N2_1	C3_1	C6_1	110.9(4)	C11_3	N4_3	P1_3	119.4(3)
C5_1	C3_1	C4_1	109.2(4)	C11_3	N4_3	C13_3	115.9(4)
C5_1	C3 ¹	C6_1	108.3(4)	C13_3	N4 3	P1 3	123.6(3)
C6_1	C3_1	C4_1	108.5(4)	C12_3	C11_3	N4_3	118.2(5)
N3_1	C7_1	C8_1	111.2(4)	N4_3	C13_3	C14_3	113.6(5)
N3_1	C7_1	C9_1	108.7(4)	P1_4	N1_4	Ag1_5	120.6(4)
N3_1	C7_1	C10_1	109.6(4)	P1_4	N1_4	$Ag2_5^1$	140.6(4)
C8_1	C7_1	C9_1	107.9(4)	Ag1_5	N1_4	$Ag2_5^1$	93.1(2)
C10_1	C7_1	C8_1	109.1(4)	N1_4	P1_4	N2_4	117.6(2)
C10_1	C7_1	C9_1	110.4(5)	N1_4	P1_4	N3_4	120.0(3)
C11_1	N4_1	P1_1	118.2(3)	N1_4	P1_4	N4_4	111.8(2)
C11_1	N4_1	C13_1	114.9(4)	N3_4	P1_4	N2_4	92.18(18)
C13_1	N4_1	P1_1	122.5(3)	N4_4	P1_4	N2_4	106.0(2)
C12_1	C11_1	N4_1	118.0(5)	N4_4	P1_4	N3_4	106.9(2)
N4_1	C13_1	C14_1	113.8(5)	C1_4	N2_4	P1_4	109.1(3)
P1_2	N1_2	Ag1_6	117.0(4)	C1_4	N2_4	C3_4	116.5(3)
P1_2	N1_2	Ag2_6	141.9(4)	C3_4	N2_4	P1_4	122.3(3)
Ag2_6	N1_2	Ag1_6	92.5(3)	C2_4	N3_4	P1_4	113.7(3)
N1_2	P1_2	N2_2	117.8(2)	C2_4	N3_4	C7_4	118.3(4)
N1_2	P1_2	N3_2	119.9(3)	C7_4	N3_4	P1_4	128.0(3)
N1_2	P1_2	N4_2	112.1(2)	N2_4	C1_4	C2_4	104.5(3)
N3_2	P1_2	N2_2	91.99(18)	N3_4	C2_4	C1_4	105.1(3)
N4_2	P1_2	N2_2	106.1(2)	N2_4	C3_4	C4_4	111.4(4)
N4_2	P1_2	N3_2	106.7(2)	N2_4	C3_4	C5_4	108.8(4)
C1_2	N2_2	P1_2	109.2(3)	N2_4	C3_4	C6_4	110.4(4)
C1_2	N2_2	C3_2	116.9(3)	C5_4	C3_4	C4_4	109.5(4)
C3_2	N2_2	P1_2	123.2(3)	C5_4	C3_4	C6_4	108.2(4)
C2_2	N3_2	P1_2	113.8(3)	C6_4	C3_4	C4_4	108.4(4)
C2_2	N3_2	C7_2	118.3(4)	N3_4	C7_4	C8_4	111.1(4)
C7_2	N3_2	P1_2	127.9(3)	N3_4	C7_4	C9_4	108.8(4)
N2_2	C1_2	C2_2	104.3(3)	N3_4	C7_4	C10_4	109.7(4)
N3_2	C2_2	C1_2	105.2(3)	C8_4	C7_4	C9_4	107.8(4)
N2_2	C3_2	C4_2	111.5(4)	C10_4	C7_4	C8_4	109.0(4)
N2_2	C3_2	C5_2	108.7(4)	C10_4	C7_4	C9_4	110.4(5)
N2_2	03_2	06_2	110.6(4)	C11_4	N4_4	P1_4	119.0(3)
05_2	03_2	C4_2	109.4(4)	C11_4	N4_4	C13_4	115.5(4)
	03_2		108.1(4)		N4_4	P1_4	123.3(3)
			108.4(4)			IN4_4	110.0(5)
N3_2	07_2		100.0(4)	N4_4		0^{14}_{4}	113.7(5)
N3_2	07_2	09_2	108.9(4)	NT_1 N4_4	Ag1_5	Ag2_5'	129.4(2)
IN3_2	07_2		109.7(4)	INT_1	Ag1_5	Ag2_5	44.5(2)
U0_2	U/_Z	U9_2	107.8(4)	INI_4	Agi_5	IN I_I	171.0(3)

C10_2 C10_2 C11_2 C13_2 C12_2 N4_2 P1_3 N1_3 N1_3 N1_3 N1_3	C7_2 C7_2 N4_2 N4_2 C11_2 C13_2 N1_3 P1_3 P1_3 P1_3 P1_3	C8_2 C9_2 P1_2 C13_2 P1_2 N4_2 C14_2 Ag1_6 N2_3 N3_3 N4_3	109.0(4) 110.4(5) 118.9(3) 115.9(4) 123.4(3) 118.5(5) 113.8(5) 119.3(4) 117.6(2) 119.9(3) 111.9(2)	N1_4 N1_4 Ag2_5 N1_1 N1_1 N1_41 N1_41 N1_41 Ag1_5 N1_2 N1_2 N1_2	Ag1_5 Ag1_5 Ag2_5 Ag2_5 Ag2_5 Ag2_5 Ag2_5 Ag2_5 Ag2_5 Ag2_5 Ag2_5 Ag1_6 Ag1_6	Ag2_5 ¹ Ag2_5 Ag2_5 ¹ Ag1_5 Ag1_5 ¹ N1_1 Ag1_5 ¹ Ag1_5 ¹ Ag1_5 ¹ N1_3 Ag2_6	43.82(19) 127.2(2) 87.661(16) 44.1(2) 133.8(2) 173.9(3) 130.6(2) 43.13(18) 92.331(16) 170.4(3) 42.9(2)
C12_2	C11_2	N4_2	118.5(5)	N1_41	Ag2_5	N1_1	173.9(3)
N4_2	C13_2	C14_2	113.8(5)	N1_41	Ag2_5	Ag1_5	130.6(2)
P1_3	N1_3	Ag1_6	119.3(4)	N1_41	Ag2_5	Ag1_5 ¹	43.13(18)
N1_3	P1_3	N2_3	117.6(2)	Ag1_5	Ag2_5	Ag1_5 ¹	92.331(16)
N1_3	P1_3	N3_3	119.9(3)	N1_2	Ag1_6	N1_3	170.4(3)
N1_3	P1_3	N4_3	111.9(2)	N1_2	Ag1_6	Ag2_6	42.9(2)
N3_3	P1_3	N2_3	92.34(19)	N1_3	Ag1_6	Ag2_6	129.9(2)
N4_3	P1_3	N2_3	106.0(2)	N1_2	Ag2_6	Ag1_6	44.6(2)
N4_3	P1_3	N3_3	106.8(2)	N1_31	Ag2_6	Ag1_6	136.8(2)
C1_3	N2_3	P1_3	109.5(3)				

¹-X,+Y,1/2-Z

	2-Ag
Empirical Formula	C60H120Ag4N16P4
Formula Weight	1621.07
Temperature (K)	100.0
Crystal System	Monoclinic
Space Group	C2/c
a/Å	25.417(4)
b/Å	15.104(2)
c/Å	40.405(8)
al °	90
ßlo	105.657(8)
p/ o	90
Volume/Å3	14935(5)
Z	8
Ζ'	1
<i>р</i> (g/ст3)	1.442
μ(mm-1)	1.165
F(000)	6720.0
Crystal Size/mm3	0.215 x 0.192 x 0.163
Radiation	ΜοΚα (λ=0.71073)
2θ range for data	
collection(°)	4.384 to 55.236
	-32 ≤ 11 ≤ 20, -19 ≤ K ≤19
Index Ranges	-52≤ 1 ≤ 52
Reflections Collected	52846
	17175 [Rint = 0.0658,
Independent Reflections	Rsigma = 0.0669j
ers	17175/97/862
Goodness-of-Fit on F2	1.037
Final R Indexes [I>= 2σ	R1=0.0455,
(l)] Einal B Indoxos (all	wR2=0.1135
datal	wR2=0.1220
Largest Diff. Peak/Hole/	
(e Å3)	0.90/-0.63
Flack Parameter	-
Completeness to 2θ	99

 Table S7. Crystallographic Data and Structure Refinement for 2-Ag

Table S8: Bond Lengths in Å for 2-Ag.

Atom	Atom	Length/Å
Ag1	Ag2	2.9588(5)
Ag1	Ag4	2.9582(5)
Ag1	N1	2.095(3)
Ag1	N13	2.072(3)
Ag2	Ag3	2.9168(5)
Ag2	N1	2.091(3)
Ag2	N5	2.084(3)
Ag3	Ag4	2.9811(5)
Ag3	N5	2.071(3)
Ag3	N9	2.074(4)
Ag4	N9	2.058(4)
Ag4	N13	2.057(3)
P1	N1	1.557(3)
P1	N2	1.687(3)
P1	N3	1.677(4)
P1	N4	1.672(3)
P2	N5	1.542(3)
P2	N6	1.687(4)
P2	N8	1.675(4)
P2	N7A	1.683(10)
P2	N7B	1.686(5)
P3	N9	1.534(4)
P3	N10A	1.686(8)
P3	N11B	1.678(8)
P3	N12A	1.77(3)
P3	N10B	1.668(5)
P3	N11A	1.694(5)
P3	N12B	1.621(14)
P4	N13	1.541(3)
P4	N14	1.692(3)
P4	N15	1.674(3)
P4	N16	1.659(3)
N2	C1	1.488(5)
N2	C5	1.470(6)
N3	C6	1.461(5)
N3	C10	1.467(5)
N4	C11	1.451(5)
N4	C15	1.468(5)
N6	C16	1.483(5)
N6	C20	1.461(5)
N8	C26	1.464(5)
N8	C30	1.452(6)
N14	C46	1.472(5)
N14	C50	1.479(5)
N15	C51	1.470(5)
N15	C55	1.458(5)
N16	C56	1.460(4)

Atom	Atom	Length/Å
C26	C27	1.512(7)
C27	C28	1.505(8)
C28	C29	1.526(8)
C29	C30	1.488(8)
C46	C47	1.526(5)
C47	C48	1.524(6)
C48	C49	1.529(6)
C49	C50	1.526(5)
C51	C52	1 530(6)
C52	C53	1.529(6)
C53	C54	1.537(6)
C54	C55	1.528(6)
C56	C57	1.520(6)
C57	C58	1.522(0)
C58	C50	1.535(0)
C50	C60	1.527(0)
CJ9 NZA	C00	1.320(3)
	C2TA C25A	1.473(0)
	C25A	1.444(7)
CZIA	CZZA	1.554(6)
CZZA	C23A	1.474(9)
C23A	C24A	1.598(9)
C24A	C25A	1.365(9)
N10A	C31A	1.478(12)
N10A	C35A	1.465(15)
C31A	C32A	1.523(9)
C32A	C33A	1.514(11)
C33A	C34A	1.524(9)
C34A	C35A	1.518(8)
N11B	C36B	1.430(10)
N11B	C40B	1.472(9)
C36B	C37B	1.522(12)
C37B	C38B	1.540(13)
C38B	C39B	1.610(13)
C39B	C40B	1.449(12)
N12A	C45A	1.55(2)
N12A	C41A	1.50(5)
C45A	C44A	1.06(5)
C44A	C43A	1.58(5)
C43A	C42A	1.45(6)
C42A	C41A	1.55(4)
N7B	C21B	1.472(6)
N7B	C25B	1.445(7)
C21B	C22B	1.534(8)
C22B	C23B	1.475(9)
C23B	C24B	1.600(9)
C24B	C25B	1.367(9)
N10B	C31B	1.478(12)

N16	C60	1.464(4)
C1	C2	1.515(6)
C2	C3	1.514(8)
C3	C4	1.537(8)
C4	C5	1.519(6)
C6	C7	1.509(6)
C7	C8	1.531(7)
C8	C9	1.515(7)
C9	C10	1.529(6)
C11	C12	1.512(6)
C12	C13	1.538(7)
C13	C14	1.517(6)
C14	C15	1.503(6)
C16	C17	1.526(6)
C17	C18	1.530(7)
C18	C19	1.525(7)
C19	C20	1.515(6)

C35B	1.465(15)
C32B	1.523(9)
C33B	1.514(11)
C34B	1.524(9)
C35B	1.518(8)
C36A	1.430(9)
C40A	1.472(9)
C37A	1.521(12)
C38A	1.542(13)
C39A	1.611(13)
C40A	1.449(12)
C41B	1.55(2)
C45B	1.419(11)
C42B	1.508(15)
C43B	1.55(2)
C44B	1.52(2)
C45B	1.65(2)
	C35B C32B C34B C35B C36A C40A C37A C38A C39A C40A C41B C42B C42B C42B C42B C43B C44B C45B

Atom	Atom	Atom	Angle/°
Ag4	Ag1	Ag2	90.713(16)
N1	Ag1	Ag2	44.96(9)
N1	Ag1	Ag4	128.53(9)
N13	Ag1	Ag2	128.15(8)
N13	Ag1	Ag4	44.03(8)
N13	Ag1	N1	172.37(12)
Ag3	Ag2	Ag1	89.709(16)
N1	Ag2	Ag1	45.07(8)
N1	Ag2	Ag3	127.72(8)

Ag1

Ag3

N1

Ag4

Ag2

Ag4

N9

Ag2

Ag4

Ag3

Ag1

Ag3

Ag1

Ag3

N9

N2

N3

N4

N2

N2

N3

N6

N8

N7A

127.89(9)

45.25(10)

172.54(12)

91.084(16)

45.58(9)

129.38(9)

172.10(14)

126.72(11)

43.60(10)

88.494(16)

124.74(12)

44.04(10) 44.45(8)

126.47(8)

169.07(14)

123.48(17)

110.26(17)

109.88(17)

99.57(17)

101.63(17)

111.33(18)

117.35(19)

111.70(19)

116.3(5)

S9: Bond Angles in [°] for 2-Ag

Ag2

Ag2

Ag2

Ag3

Ag3

Ag3

Ag3

Ag3

Ag3

Ag4

Ag4

Ag4

Ag4

Ag4

Ag4

P1

P1

P1

P1

P1

P1

P2

P2

P2

N5

N5

N5

N5

N5

N5

N9

N9

Ag1

N9

N9

N13

N13

N13

N1

N1

N1

N3

N4

N4

N5

N5

N5

Ag2

Atom	Atom	Atom	Angle/°
C6	C7	C8	111.7(4)
C9	C8	C7	109.9(4)
C8	C9	C10	111.8(4)
N3	C10	C9	109.4(4)
N4	C11	C12	111.0(4)
C11	C12	C13	111.0(4)
C14	C13	C12	109.8(4)
C15	C14	C13	110.9(4)
N4	C15	C14	111.4(4)
N6	C16	C17	109.6(4)
C16	C17	C18	110.7(4)
C19	C18	C17	110.1(4)
C20	C19	C18	110.1(4)
N6	C20	C19	111.0(4)
N8	C26	C27	110.1(4)
C28	C27	C26	111.7(5)
C27	C28	C29	110.0(5)
C30	C29	C28	111.2(4)
N8	C30	C29	111.8(4)
N14	C46	C47	110.6(3)
C48	C47	C46	109.8(4)
C47	C48	C49	109.8(4)
C50	C49	C48	111.9(3)
N14	C50	C49	110.3(3)
N15	C51	C52	110.8(3)
C53	C52	C51	111.0(3)
C52	C53	C54	111.0(3)
C55	C54	C53	110.5(4)
N15	C55	C54	110.6(3)
N16	C56	C57	109.7(3)
C56	C57	C58	110.0(3)
C59	C58	C57	110.9(3)
C60	C59	C58	110.5(3)

N5	P2	N7B	114.3(2)	N16	C60	C59	110.6(3)
N8	P2	N6	100.92(18)	C21A	N7A	P2	126.8(9)
N8	P2	N7A	99.2(7)	C25A	N7A	P2	120.5(9)
N8	P2	N7B	111 0(2)	C25A	N7A	C21A	111 5(5)
N7A	P2	N6	108 8(6)	N7A	C21A	C22A	109 3(5)
N7B	P2	N6	100.4(2)	C23A	C22A	C21A	112 0(6)
	D2		112 5(6)	C22A	C23A	C24A	112.0(0)
NO	P3		107.6(5)	C25A	C24A	C24A	112.0(3) 115.1(7)
N9 NO	г J D2		107.0(3)	C23A	C24A		113.1(7)
N9	F3 D2		100.3(14)	C24A			119.1(7)
N9	P3	NIUB	118.0(4)	COTA	NIUA	P3	120.3(13)
N9	P3	N11A	120.2(3)	C35A	N10A	P3	121.9(11)
N9	P3	N12B	111.7(6)	C35A	NTUA	C3TA	111.6(6)
N10A	P3	N12A	102.1(14)	N10A	C31A	C32A	109.0(6)
N11B	P3	N10A	103.8(10)	C33A	C32A	C31A	111.9(7)
N11B	P3	N12A	122.4(12)	C32A	C33A	C34A	111.1(6)
N10B	P3	N11A	97.9(6)	C35A	C34A	C33A	110.2(6)
N12B	P3	N10B	106.0(6)	N10A	C35A	C34A	110.4(7)
N12B	P3	N11A	100.7(5)	C36B	N11B	P3	123.5(8)
N13	P4	N14	115.55(16)	C36B	N11B	C40B	112.2(7)
N13	P4	N15	116.36(17)	C40B	N11B	P3	116.4(8)
N13	P4	N16	110.43(15)	N11B	C36B	C37B	111.7(7)
N15	P4	N14	99.38(15)	C36B	C37B	C38B	110.6(9)
N16	P4	N14	107.14(15)	C37B	C38B	C39B	106.3(9)
N16	P4	N15	107.02(16)	C40B	C39B	C38B	110.1(10)
Ag2	N1	Ag1	89.97(12)	C39B	C40B	N11B	113.7(8)
PĬ	N1	Ag1	112.82(16)	C45A	N12A	P3	129(3)
P1	N1	Ag2	117.18(18)	C41A	N12A	P3	104.4(19)
C1	N2	Pľ	117.6(3)	C41A	N12A	C45A	120(3)
C5	N2	P1	117.5(3)	C44A	C45A	N12A	121(4)
C5	N2	C1	110.0(3)	C45A	C44A	C43A	119(3)
C6	N3	P1	118.1(3)	C42A	C43A	C44A	105(3)
C6	N3	C10	111.9(3)	C43A	C42A	C41A	113(3)
C10	N3	P1	124.0(3)	N12A	C41A	C42A	108(2)
C11	N4	P1	123.9(3)	C21B	N7B	P2	121 9(4)
C11	N4	C15	112 8(3)	C25B	N7B	P2	124 8(4)
C15	N4	P1	123 3(3)	C25B	N7B	C21B	1115(4)
An3	N5	An2	89 17(13)	N7R	C21B	C22B	109 5(5)
P2	N5	Δg2	122 8(2)	C23B	C22B	C21B	111 8(5)
P2	N5	Ag2 Ag3	137 3(2)	C22B	C23B	C24B	112 3(5)
C16	NG	D2	116 5(3)	C25B	C24B	C23B	112.0(0)
C20	NG	P2	116 6(3)	C24B	C25B	N7B	118.6(6)
C20	NG	C16	109 3(3)	C31B	N10B		116.0(0)
C20		20	124 5(3)	C35B		F 3 D 2	116.4(3)
C20			124.3(3)	C35B			110.0(9) 111.7(5)
C30		FZ C26	112.0(3)			COLD	111.7(3)
		020	112.0(4)		COLD	COLD	109.0(5)
Ag4	IN9	Ays	92.30(14)	C33D	COOD		111.0(0)
P3	N9 NO	Ag3	123.2(2)	COED		C34B	111.1(5)
P3	N9	Ag4	130.7(3)		C34B	C33B	110.2(0)
Ag4	N13	Agi	91.01(12)	NTUB		C34B	110.5(7)
P4	N13	Agi	130.92(17)	C36A	NTTA	P3	127.9(5)
P4	N13	Ag4	128.98(17)	C36A		C40A	112.4(7)
046	N14	P4	115.6(2)	C4UA		P3	114.1(5)
046	N14	050	110.5(3)	N11A	C36A	C3/A	111.8(7)
050	N14	P4	116.0(2)	C36A	C3/A	C38A	110.5(9)
C51	N15	P4	127.8(3)	C37A	C38A	C39A	105.8(9)
C55	N15	P4	118.8(2)	C40A	C39A	C38A	110.0(10)

C55	N15	C51	112.1(3)	C39A	C40A	N11A	113.8(8)
C56	N16	P4	122.9(2)	C41B	N12B	P3	126.0(10)
C56	N16	C60	112.5(3)	C45B	N12B	P3	122.4(14)
C60	N16	P4	122.8(2)	C45B	N12B	C41B	104.6(12)
N2	C1	C2	110.2(4)	C42B	C41B	N12B	107.2(8)
C3	C2	C1	111.0(4)	C41B	C42B	C43B	109.8(9)
C2	C3	C4	110.2(4)	C44B	C43B	C42B	111.2(12)
C5	C4	C3	110.5(4)	C43B	C44B	C45B	108.1(9)
N2	C5	C4	110.3(4)	N12B	C45B	C44B	106.3(13)
N3	C6	C7	110.3(3)				. ,

	2-Ce
Empirical Formula	C45H90Ce16N12P3
Formula Weight	1032.31
Temperature (K)	99.99
Crystal System	Triclinic
Space Group	P-1
a/Å	13.827(2)
b/Å	14.5142(18)
c/Å	16.6474(19)
al °	88.104(5)
βl °	70.874(7)
p/ °	62.002(6)
Volume/Å3	2757.7(7)
Z	2
Ζ'	2
<i>р</i> (g/ст3)	1.243
μ(mm-1)	0.953
F(000)	1094.0
Crystal Size/mm3	0.37 x 0.258 x 0.216
Radiation	ΜοΚα (λ=0.71073)
2 <i>θ</i> range for data	4 400 1 50 044
collection(°)	4.428 to 56.644
	≤19,
Index Ranges	-21≤ 1 ≤ 22
Reflections Collected	56846
Indonandant Poflactions	13672 [Rint = 0.0439,
Data/Restraints/Paramet	Ksigiria – 0.0340j
ers	13672/12/569
Goodness-of-Fit on F2	1.052
Final R Indexes [I>= 2σ	R1=0.0266,
(I)] Final R Indexes [all	R1=0.0637
data]	wR2=0.0656
Largest Diff. Peak/Hole/	
(e A3)	1.45/-1.18
Flack Parameter	-
Completeness to 2θ	99

 Table S10. Crystallographic Data and Structure Refinement for 1-Ce

Table S11: Bond Lengths in Å for 1-Ce.					
Atom	Atom	Length/Å			
Ce1	Ce11	3.8769(5)			
Ce1	P0021	3.4067(5)			
Ce1	N1	2.4178(14)			
Ce1	N11	2.4956(15)			
Ce1	N5	2.2731(15)			
Ce1	N9	2.2752(15)			
P002	N1	1.5446(14)			
P002	N2	1.7119(15)			
P002	N3	1.6762(15)			
P002	N4	1.6611(15)			
P003	N5	1.5270(15)			
P003	N6	1.6944(15)			
P003	N7	1.6858(15)			
P003	N8	1.6875(16)			
P004	N9	1.5298(15)			
P004	N10	1.6799(18)			
P004	N12	1.6998(15)			
P004	N11A	1.723(3)			
P004	N11B	1.649(6)			
N2	C1	1.492(2)			
N2	C5	1.470(2)			
N3	C6	1.469(2)			
N3	C10	1.472(2)			
N4	C11 C15	1.464(2)			
N4 NG	C15	1.460(2)			
	C16 C20	1.407(2)			
	C20	1.403(2)			
N7	C21	1.400(2)			
IN7 NO	C25	1.407(Z) 1.465(2)			
	C20	1.400(3)			
	C30	1.400(2)			
N10	C35	1.459(3)			
N10	C35	1.400(2)			
N12	C45	1.407(2)			
C1	C2	1.509(3)			
C2	C3	1.530(3)			
C3	C4	1.550(5) 1.514(3)			
C4	C5	1 499(3)			
C6	C7	1.527(2)			

Atom	Atom	Length/Å
C7	C8	1.524(3)
C8	C9	1.524(3)
C9	C10	1.520(3)
C11	C12	1.522(3)
C12	C13	1.523(3)
C13	C14	1.523(3)
C14	C15	1.526(3)
C16	C17	1.512(3)
C17	C18	1.528(3)
C18	C19	1.518(3)
C19	C20	1.518(3)
C21	C22	1.518(3)
C22	C23	1.528(3)
C23	C24	1.520(3)
C24	C25	1.524(3)
C26	C27	1.525(3)
C27	C28	1.526(4)
C28	C29	1.511(4)
C29	C30	1.524(3)
C31	C32	1.516(3)
C32	C33	1.525(3)
C33	C34	1.517(3)
C34	C35	1.519(3)
C41	C42	1.524(3)
C42	C43	1.522(3)
C43	C44	1.515(3)
C44	C45	1.522(3)
N11A	C36A	1.540(8)
N11A	C40A	1.532(8)
C36A	C37A	1.516(4)
C37A	C38A	1.527(4)
C38A	C39A	1.521(4)
C39A	C40A	1.517(4)
N11B	C36B	1.540(8)
N11B	C40B	1.533(8)
C36B	C37B	1.516(4)
C37B	C38B	1.527(4)
C38B	C39B	1.521(̀4)́
C39B	C40B	1.518(4)

¹1-X,1-Y,1-Z

Table S12: Bond Angles in ° for 1-Ce.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
P0021	Ce1	Ce11	60.689(11)	C31	N10	P004	122.37(13)
N11	Ce1	Ce11	37.20(3)	C35	N10	P004	122.02(15)
N1	Ce1	Ce11	38.61(3)	C35	N10	C31	112.11(19)

N1	Ce1	P0021	98.79(4)	C41	N12	P004	113.99(12)
N11	Ce1	P0021	24.70(3)	C45	N12	P004	115.58(12)
N1	Ce1	N11	75.82(5)	C45	N12	C41	110.40(14)
N5	Ce1	Ce11	125.33(4)	N2	C1	C2	111.82(15)
N5	Ce1	P0021	122.60(4)	C1	C2	C3	112,19(16)
N5	Ce1	N1	110.94(5)	C4	$\overline{C3}$	C2	108 89(16)
N5	Ce1	N11	123 51(5)	C5	C4	C3	110 57(18)
N5	Ce1	NQ	105.89(6)	N2	C5	C4	111 09(18)
NQ			125.52(4)	N2	C6	C7	109 51(15)
NO		D0021	120.02(+) 109.19(4)		C7	C6	111 20(15)
NO NO			100.10(4)			C0	111.29(13)
NO	Cel		110.07(5)	C9			111.00(10)
IN9	Cer		124.70(3)		C9		111.22(17)
	P002	Cerr	42.40(5)	IN3		C9	108.96(15)
IN T	P002	NZ	110.02(8)	N4		012	110.98(17)
N1	P002	N3	119.46(8)	C11	012	013	110.3(2)
N1	P002	N4	113.94(8)	C12	C13	C14	111.14(17)
N2	P002	Ce11	72.52(5)	C13	C14	C15	110.82(18)
N3	P002	Ce11	108.84(5)	N4	C15	C14	110.06(16)
N3	P002	N2	100.56(7)	N6	C16	C17	111.05(17)
N4	P002	Ce11	147.12(6)	C16	C17	C18	111.49(18)
N4	P002	N2	108.28(8)	C19	C18	C17	110.07(17)
N4	P002	N3	103.35(8)	C20	C19	C18	110.26(18)
N5	P003	N6	113.62(8)	N6	C20	C19	110.79(16)
N5	P003	N7	120.02(8)	N7	C21	C22	110.04(15)
N5	P003	N8	113.31(8)	C21	C22	C23	110.70(17)
N7	P003	N6	99.57(7)	C24	C23	C22	110.33(18)
N7	P003	N8	99.49(̀8)	C23	C24	C25	111.39(18)
N8	P003	N6	109.13(8)	N7	C25	C24	110.15(16)
N9	P004	N10	113.27(9)	N8	C26	C27	109.51(18)
N9	P004	N12	119.52(8)	C26	C27	C28	110.3(2)
N9	P004	N11A	115 6(4)	C29	C28	C27	110.65(18)
N9	P004	N11B	112 9(4)	C28	C29	C30	111 49(19)
N10	P004	N12	102 22(8)	N8	C30	C29	110 75(18)
N10	P004	N11A	102.22(0)	N10	C31	C32	110.86(17)
N12	P004		102.2(0)	C31	C32	C33	111 03(17)
N11R	P004	N10	101.0(3) 110.4(7)	C34	C33	C32	110.08(17)
	P004	N10	110.4(7)	C22	C34	C32	100.00(17)
	F 004		37.0(3) 104.19(5)	N10	C25	C34	110 40(10)
	IN I NI	Cell	104.10(0)	NIU NIO	C35	C34	110.40(10)
		Cel	137.12(0)	N12	C41	C42	110.75(10)
P002		Doop	112.04(7)	C43	C42	C41	110.52(10)
		P002	110.04(11)	C44	043	042	109.92(17)
05	NZ	P002	120.76(12)	C43	C44	045	110.69(17)
C5	N2	C1	110.71(14)	N12	C45	C44	110.22(17)
C6	N3	P002	116.79(11)	C36A	N11A	P004	118.0(4)
C6	N3	C10	109.93(14)	C40A	N11A	P004	126.8(4)
C10	N3	P002	117.70(11)	C40A	N11A	C36A	105.0(8)
C11	N4	P002	124.22(13)	C37A	C36A	N11A	103.3(6)
C15	N4	P002	122.69(12)	C36A	C37A	C38A	110.9(3)
C15	N4	C11	112.48(15)	C39A	C38A	C37A	109.7(2)
P003	N5	Ce1	173.82(10)	C40A	C39A	C38A	111.3(3)
C16	N6	P003	116.92(13)	C39A	C40A	N11A	104.0(6)
C20	N6	P003	121.61(12)	C36B	N11B	P004	109.4(6)
C20	N6	C16	111.97(15)	C40B	N11B	P004	119.5(8)
C21	N7	P003	116.05(11)	C40B	N11B	C36B	104.6(7)
C21	N7	C25	110.51(15)	C37B	C36B	N11B	103.7(6)
C25	N7	P003	115.95(12)́	C36B	C37B	C38B	111.3(̀3)́
			× /				X - 7

C26	N8	P003	122.49(13)	C39B	C38B	C37B	109.9(2)
C26	N8	C30	111.64(16)	C40B	C39B	C38B	111.2(2)
C30	N8	P003	116.33(13)	C39B	C40B	N11B	103.5(6)
P004	N9	Ce1	178.25(10)				

¹1-X,1-Y,1-Z

References

- 1. T. P. Gompa, N. T. Rice, D. R. Russo, L. M. Aguirre Quintana, B. J. Yik, J. Bacsa and H. S. La Pierre, *Dalton Trans.*, 2019, **48**, 8030-8033.
- 2. N. T. Rice, J. Su, T. P. Gompa, D. R. Russo, J. Telser, L. Palatinus, J. Bacsa, P. Yang, E. R. Batista and H. S. La Pierre, *Inorg. Chem.*, 2019, **58**, 5289-5304.
- 3. N. T. Rice, I. A. Popov, D. R. Russo, J. Bacsa, E. R. Batista, P. Yang, J. Telser and H. S. La Pierre, *J. Am. Chem. Soc.*, 2019, **141**, 13222-13233.
- 4. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176-2179.
- 5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard and H. Puschmann, *J. App. Crystallogr.*, 2009, **42**, 339-341.
- 6. G. M. Sheldrick, *Acta Crystallogr. A*, 2015, **71**, 3-8.
- 7. G. M. Sheldrick, Acta Crystallogr. C, 2015, **71**, 3-8.
- 8. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens and M. Towler, *J. App. Crystallogr.*, 2020.
- Persistence of Vision Pty. Ltd. (2004) Persistence of Vision Raytracer (Version 3.6) [Computer software]. Retrieved from <u>http://www.povray.org/download/</u>