Supporting Information

Accelerative charge transfer of $Cd_{0.5}Zn_{0.5}S@ZnS$ core-shell nano-spheres via decoration of Ni₂P and g-C₃N₄ toward efficient visible-light-driven H₂ production

Xiaowei Ma,^{a,b,†} Qinqin Ruan,^{a,†} Jiakun Wu,^a Ying Zuo,^c Xipeng Pu,^b Haifeng Lin,*^a Xiujie Yi,^b Yanyan Li*^a and Lei Wang^a

 ^a Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
^b College of Materials Science and Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng 252059, P. R. China

^c Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China

E-mail: hflin20088@126.com, liyanyan6771@163.com

⁺ These authors contributed equally to this work.

Fig. S1 Calculated bandgaps of (a) $CZ_{0.5}S$ and ZnS, (b) $g-C_3N_4$.

Fig. S2 SEM image of g-C₃N₄ nanosheets.

Fig. S3 (a) Cd 3d, (b) Zn 2p, and (c) S 2p XPS spectra of $CZ_{0.5}S@50ZS$. (d) S 2p XPS spectrum of $CZ_{0.5}S@50ZS-6N/8CN$. (e) N 1s and (f) C 1s XPS spectra of $g-C_3N_4$.

Fig. S4 (a) Visible-light-induced HER activities and (b) corresponding average rates of the $CZ_{0.5}S@ZnS$ composites containing different ZnS contents. (c) H_2 generation activities and (d) corresponding average rates of the $CZ_{0.5}S@50ZS-Ni_2P$ photocatalysts with varying Ni_2P concentrations. (e) The influence of g-C₃N₄ loading amount on the HER activity of $CZ_{0.5}S@50ZS-3N/g-C_3N_4$ hybrids. (f) Apparent quantum yield calculating curve of $CZ_{0.5}S@50ZS-3N/8CN$.

Fig. S5 Cycling H_2 evolution of the $CZ_{0.5}S$ -3N/8CN composite.

Table S1 Comparison on the	photocatalytic HER activities of	of CdS-based photocatalysts.
----------------------------	----------------------------------	------------------------------

Photocatalyst	Hole scavenger (aqueous solution)	Light source (Xe lamp)	Maximum rate (mmol·h ⁻¹ ·g ⁻¹)	AQY (420 nm)	Referenc e
CZ _{0.5} S@ZS-Ni ₂ P/CN	Na_2S/Na_2SO_3	λ > 420 nm	55.43	21%	This work
MnOx@CdS@GR	Na_2S/Na_2SO_3	λ > 420 nm	5.45	12.4%	1
Ni ₂ P/MCdS-DETA	Na_2S/Na_2SO_3	λ > 420 nm	6.84	-	2
ZnO/CdS-T120	Na_2S/Na_2SO_3	λ > 420 nm	2.07	-	3
CdS/ZnS	Na_2S/Na_2SO_3	λ > 420 nm	0.79	-	4
MoS ₂ -NiS/CdS	Lactic acid	λ > 420 nm	25.25	-	5
CdS-Ag ₂ S	TEOA	λ > 420 nm	7.5	-	6
SiCN@2CdS	Triethanolamine	λ > 420 nm	2.73	-	7
CdS/VN	Lactic acid	λ > 420 nm	6.24	5.3%	8
CdS-Co ₃ O ₄	Lactic acid	λ > 420 nm	10.14	9.7%	9
CoPe@CdS/rGO	Na_2S/Na_2SO_3	λ > 420 nm	29.4	-	10
CdS/Mo ₂ C@C	Lactic acid	λ > 420 nm	5.54	4.9%	11
Cd _{0.5} Zn _{0.5} S/Ni ₂ P	Na_2S/Na_2SO_3	λ > 420 nm	41.26	-	12
CDs/CdS	Lactic acid	λ > 420 nm	6.7	19.3%	13
CuS/CdS(H)/CdS(C)	Lactic acid	λ > 420 nm	2.03	-	14
CdS/CuS	Triethanolamine	λ > 420 nm	0.22	-	15
2D/2D Ni ₂ P/CdS	Lactic acid	λ ≥ 420 nm	17.95	4.2%	16
NiCd/CdS	Na_2S/Na_2SO_3	λ > 410 nm	11.57	-	17
NiCo-LDH/P-CdS	Lactic acid	λ > 420 nm	8.66	14%	18
CdS/WS ₂	Lactic acid	λ > 420 nm	14.1	-	19
CdS/VC	Lactic acid	λ > 420 nm	14.2	8.7%	20

Ni ₂ P/Zn _{0.5} Cd _{0.5} S	Na_2S/Na_2SO_3	λ > 420 nm	5.33	18.1%	21
MoS ₂ /CdS	Na ₂ S/Na ₂ SO ₃	λ > 420 nm	4.65	7.31%	22

References

- P. F. Tan, A. Q. Zhu, L. L. Qiao, W. X. Zeng, H. Cui and J. Pan, J. Colloid Interface Sci., 2019, 533, 452-462.
- 2 T. P. Hu, K. Dai, J. F. Zhang, G. P. Zhu and C. H. Liang, Appl. Surf. Sci., 2019, 481, 1385-1393.
- 3 H. Zhao, Y. M. Dong, P. P. Jiang, G. L. Wang, H. Y. Miao, R. X. Wu, L. G. Kong, J. J. Zhang and C. Zhang, ACS Sustain. Chem. Eng., 2015, 3, 969-977.
- 4 Y. P. Xie, Z. B. Yu, G. Liu, X. L. Ma and H. M. Cheng, Energy Environ. Sci., 2014, 7, 1895-1901.
- 5 M. C. Yin, W. L. Zhang, F. F. Qiao, J. F. Sun, Y. T. Fan and Z. J. Li, J. Solid State Chem., 2019, 270, 531-538.
- 6 T. M. Di, B. Cheng, W. K. Ho, J. G. Yu and H. Tang, Appl. Surf. Sci., 2019, 470, 196-204.
- 7 W. Wang and J. J. Fang, Ceram. Int., 2020, 46, 2384-2391.
- 8 L. Tian, S. X. Min, F. Wang and Z. G. Zhang, J. Phys. Chem. C, 2019, 123, 28640-28650.
- 9 O. Yehezkeli, D. R. de Oliveira and J. N. Cha, *Small*, 2015, 11, 668-674.
- 10 J. C. Hu, S. S. Sun, W. Xia, J. Wu, H. F. Liu and F. Wang, Chem. Commun., 2019, 55, 14490-14493.
- 11 Y. X. Pan, J. B. Peng, S. Xin, Y. You, Y. L. Men, F. Zhang, M. Y. Duan, Y. Cui, Z. Q. Sun and J. Song, ACS Sustain. Chem. Eng., 2017, 5, 5449-5456.
- 12 T. P. Yu, Y. Y. Si, Z. H. Lv, K. H. Wang, Q. Zhang, X. Liu, G. X. Wang, G. W. Xie and L. H. Jiang, *Int. J. Hydrog. Energy*, 2019, **44**, 31832-31840.
- 13 C. Zhu, C. A. Liu, Y. J. Fu, J. Gao, H. Huang, Y. Liu and Z. H. Kang, *Appl. Catal., B*, 2019, 242, 178-185.
- 14 L. F. Luo, Y. D. Wang, S. P. Huo, P. Lv, J. Fang, Y. Yang and B. Fei, *Int. J. Hydrog. Energy*, 2019, 44, 30965-30973.
- 15 X. D. Yang, G. W. Lu, B. Y. Wang, T. L. Wang and Y. Q. Wang, *RSC Adv.*, 2019, 9, 25142-25150.
- 16 C. Liu, M. H. Xiong, B. Chai, J. T. Yan, G. Z. Fan and G. S. Song, *Catal. Sci. Technol.*, 2019, 9, 6929-6937.
- 17 B. Wang, S. He, L. L. Zhang, X. Y. Huang, F. Gao, W. H. Feng and P. Liu, *Appl. Catal.*, B, 2019, 243, 229-235.
- 18 S. S. Li, L. Wang, Y. D. Li, L. H. Zhang, A. X. Wang, N. Xiao, Y. G. Gao, N. Li, W. Y. Song and L. Ge, *Appl. Catal.*, B, 2019, 254, 145-155.
- 19 K. Zhang, M. Fujitsuka, Y. K. Du and T. Majima, ACS Appl. Mater. Interfaces, 2018, 10, 20458-20466.
- 20 L. Tian, S. X. Min and F. Wang, Appl. Catal., B, 2019, 259, 118029.
- 21 D. S. Dai, L. Wang, N. Xiao, S. S. Li, H. Xu, S. Liu, B. Xu, D. Lv, Y. Q. Gao and W. Y. Song, *Appl. Catal.*, *B*, 2018, 233, 194-201.
- 22 B. Chai, M. Q. Xu, J. T. Yan and Z. D. Ren, Appl. Surf. Sci., 2018, 430, 523-530.