SUPPORTING INFORMATION

Self-assembled Gold Nanoparticles and Amphiphile Peptides: A Colorimetric Probe for Copper(II) Ion Detection

Juliane N. B. D. Pelin,^[a,b] Charlotte J. C. Edwards-Gayle,^[b] Herculano Martinho,^[a] Bárbara B. Gerbelli,^[a] Valeria Castelletto,^[b] Ian W. Hamley,^[b] Wendel A. Alves^{[a],*}

^[a]Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo André, Brazil ^[b]Department of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom

Corresponding Author *E-mail: wendel.alves@ufabc.edu.br

HAuCl ₄ /[RF] ₄	Zeta Potential (mV)	HAuCl ₄ /P[RF] ₄	Zeta Potential (mV)
6.7	$+24.1 \pm 0.49$	6.7	$+18.3 \pm 0.15$
3.3	$+18.7 \pm 0.46$	3.3	$+24.3 \pm 0.10$
2.3	$+22.2 \pm 0.19$	1.7	$+24.3 \pm 0.05$

Table S1. Zeta potential for the hybrids $HAuCl_4/[RF]_4$ and $HAuCl_4/P[RF]_4$ synthesized using NaBH₄.

Figure S1. DLS correlation curves in the function of decay time for different proportion solutions of a) HAuCl₄/[RF]₄ and b) HAuCl₄/P[RF]₄, using NaBH₄. Curves of intensity distribution as a function of hydrodynamic radius for different proportion solutions of c) HAuCl₄/[RF]₄ and d) HAuCl₄/P[RF]₄, using NaBH₄.

Figure S2. DLS correlation curves in the function of decay time for different $P[RF]_4/[RF]_4$ mixtures prepared with a) HAuCl₄-NaBH₄ and b) HAuCl₄-EGCG. Curves of intensity distribution as a function of hydrodynamic radius for different $P[RF]_4/[RF]_4$ mixtures prepared with c) HAuCl₄-NaBH₄ and d) HAuCl₄-EGCG.

Figure S3. SANS data (grey points) of $P[RF]_4/[RF]_4$ AuNP hybrids synthesized with NaBH₄ at pH 4. Model fits (red line) using the model described in the text. Table insert summarizes the fitting parameters obtained.

Figure S4. Lipopeptide blanks (left) and colour variations of the Cu²⁺ solutions (7.0, 15, 22, 30, 37, 45, 52, 60, 67, 75, 112, 150, and 223 μ mol L⁻¹) and the systems (1), (3), (5), (6), (8), and (10) (right).

Figure S5. UV/Vis absorption spectra of the Cu²⁺ solutions (7.0, 15, 22, 30, 37, 45, 52, 60, 67, 75, 112, 150, and 223 µmol L⁻¹) in the systems (1), (3), (5), (6), (8), and (10).

Vibrations	Assignments	Reference
(cm ⁻¹)	Assignments	S
107	Hydrogen-bond vibrations	[68]
170	N-Cu-N angle bend	[69]
214	Oriented crystal growth CuO	[70]
242	Cu-Cl bend	[69]
301	C-N vibrations	[60,61]
401	Cu-O stretch	[69]
434	Phenyl ring torsion	[62]
520	Silicon vibration	[66]
620	C-C twisting mode of the phenylalanine	[63]
831	C-H vibration	[64]
943	C-C vibration of the proline	[63]
985	Benzene ring breathing mode	[65]
1004	C-C vibration of the phenylalanine	[63]
1031	C-H vibration of the phenylalanine	[63]
1088	C-N vibrations of the proteins and aromatic C-C stretching	[63,66]
1158	N-H vibration of the arginine	[68]
1184	C-C stretching	[66]
1208	C-N stretching	[66]
1324	C-C stretching	[66]
1363	C-C stretching	[66]
1438	CH ₂ deformation	[64]
1586	β -turn conformation	[64]
1607	β -turn conformation	[64]
1674	β -turn conformation	[64]
1698	β -turn conformation	[64]
1723	Ester carbonyl stretching	[67]

Table S2. Raman bands assignment	ent.
----------------------------------	------

Figure S6. Comparison of the dispersive Raman spectra of 223 μ mol L⁻¹ solutions of Cu²⁺ and Ni²⁺, for the systems (3), and (8).

Samples	Rain	Тар
	[Cu ²⁺]	[Cu ²⁺]
	(µmol L ⁻¹)	(µmol L-1)
(1)	7.0 ± 0.07	7.0 ± 0.05
(3)	7.0 ± 0.03	7.0 ± 0.03
(5)	7.0 ± 0.02	15 ± 0.02
(6)	7.0 ± 0.05	7.0 ± 0.04
(8)	7.0 ± 0.02	15 ± 0.08
(10)	7.0 ± 0.07	15 ± 0.04

Table S3. Estimate of Cu²⁺ concentration in water samples (rain and tap), using the (1), (3), (5), (6), (8), and (10) systems as metal ions probe.