Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Electronic Supporting Information

Impacts of Hydrogen Bonding Interactions with Np(V/VI)O₂Cl₄ Complexes: Vibrational Spectroscopy, Redox Behavior, and Computational Analysis.

Mikaela M. Pyrch, Jennifer L. Bjorklund, James M. Williams, Daniel L. Parr IV, S. E. Mason, Johna Leddy, and Tori Z. Forbes*

Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States *corresponding author: tori-forbes@uiowa.edu; 319-384-1320

Table of Contents:

- I. Crystallographic tables
- II. Vibrational Analysis
 - a. Solutions
 - b. Solid state
 - c. Peak fitting
- III. Computational
- IV. Electrochemical Figures

1. Crystallographic tables

Np(1)-O(1)	1.8304(13)	O(1)-Np(1)-O(2)	178.66(5)
Np(1)-O(2)	1.8356(13)	O(1)-Np(1)-Cl(4)	92.99(4)
Np(1)-Cl(4)	2.7358(7)	O(2)-Np(1)-Cl(4)	88.27(4)
Np(1)-Cl(2)	2.7466(7)	O(1)-Np(1)-Cl(2)	86.29(4)
Np(1)-Cl(3)	2.7497(8)	O(2)-Np(1)-Cl(2)	92.44(4)
Np(1)-Cl(1)	2.7622(8)	Cl(4)-Np(1)-Cl(2)	177.376(12)
O(3)-C(2)	1.424(2)	O(1)-Np(1)-Cl(3)	92.87(4)
O(3)-C(3)	1.425(2)	O(2)-Np(1)-Cl(3)	87.58(4)
O(4)-C(6)	1.422(2)	Cl(4)-Np(1)-Cl(3)	91.396(12)
O(4)-C(7)	1.425(2)	Cl(2)-Np(1)-Cl(3)	91.158(12)
O(5)-C(10)	1.422(2)	O(1)-Np(1)-Cl(1)	88.72(4)
O(5)-C(11)	1.422(2)	O(2)-Np(1)-Cl(1)	90.84(4)
N(1)-C(4)	1.487(2)	Cl(4)-Np(1)-Cl(1)	88.076(12)
N(1)-C(1)	1.492(2)	Cl(2)-Np(1)-Cl(1)	89.388(12)
N(2)-C(8)	1.492(2)	Cl(3)-Np(1)-Cl(1)	178.357(13)
N(2)-C(5)	1.494(2)	C(2)-O(3)-C(3)	110.12(13)
		C(6)-O(4)-C(7)	109.81(14)
		C(10)-O(5)-C(11)	110.05(14)
		C(4)-N(1)-C(1)	110.60(14)
		C(10)-O(5)-C(11)	110.05(14)
		C(8)-N(2)-C(5)	112.13(13)
		C(12)-N(3)-C(9)	110.75(14)

 Table S1. Select bond lengths (Å) and angles (°) for Compound Np(V)Morph.

Np(1)-O(1) ^a	1.7526(18)	O(1) ^a -Np(1)-O(1)	180.0
Np(1)-O(1)	1.7526(18)	O(1) ^a -Np(1)-Cl(2) ^a	90.65(7)
Np(1)-Cl(2) ^a	2.6558(8)	O(1)-Np(1)-Cl(2) ^a	89.35(7)
Np(1)-Cl(2)	2.6558(8)	$O(1)^{a} - Np(1) - Cl(2)$	89.35(7)
Np(1)-Cl(1) ^a	2.6884(8)	O(1)-Np(1)-Cl(2)	90.65(7)
Np(1)-Cl(1)	2.6884(8)	Cl(2) ^a -Np(1)-Cl(2)	180.00(3)
O(2)-C(3)	1.417(4)	$O(1)^{a} - Np(1) - Cl(1)^{a}$	91.05(7)
O(2)-C(2)	1.423(4)	O(1)-Np(1)-Cl(1) ^a	88.95(7)
O(3)-C(8)	1.398(4)	Cl(2) ^a -Np(1)-Cl(1) ^a	91.14(3)
O(3)-C(5)	1.412(4)	Cl(2)-Np(1)-Cl(1) ^a	88.86(3)
N(1)-C(1)	1.474(4)	$O(1)^{a} - Np(1) - Cl(1)$	88.95(7)
N(1)-C(4)	1.489(4)	O(1)-Np(1)-Cl(1)	91.05(7)
N(2)-C(6)	1.469(4)	Cl(2) ^a -Np(1)-Cl(1)	88.86(3)
N(2)-C(7)	1.485(4)	Cl(2)-Np(1)-Cl(1)	91.14(3)
C(1)-C(2)	1.498(5)	Cl(1) ^a -Np(1)-Cl(1)	180.00(3)
C(3)-C(4)	1.508(5)	C(3)-O(2)-C(2)	110.7(2)
C(5)-C(6) C(7) $C(8)$	1.475(5)	C(8)-O(3)-C(5)	110.3(3)
$\mathcal{C}(I) = \mathcal{C}(0)$	1.473(3)	C(1)-N(1)-C(4)	110.5(2)
		C(6)-N(2)-C(7)	110.9(2)

Table S2. Select bond lengths (Å) and angles (°) for Compound Np(VI)Morph

Symmetry transformations used to generate equivalent atoms: a: -x,-y+1,-z+1

Figure S1. Thermal ellipsoid plots of Np(V)morph drawn at 50% probability.

Figure S2. Thermal ellipsoid plots of Np(VI)morph drawn at 50% probability.

I. Vibrational Spectra of Stocks

Figure S3. Solution state Raman spectra for Np(V) in 1M HCl stock.

Figure S4. Solution state Raman spectra for piperazine.

Figure S5. Solution state Raman spectra for morpholine.

Pyridine

Figure S6. Solution state Raman spectra for pyridine.

Figure S7. Solution state Raman spectra for piperidine.

II. Solid-state Raman Spectroscopy of Np Compounds

Figure S8. Solid state Raman spectra for compound Np(V)pipz containing Piperazine.

Figure S9. Solid state Raman spectra for Np(V)morph containing Morpholine.

Figure S10. Solid state Raman spectra for compound Np(VI)pyr containing Pyridine.

Figure S11. Solid state Raman spectra for Np(VI)morph containing morpholine.

Table S3: Spectral results from figure S8-S10, including the pe	eaks and their associated peak
centers, full width half maxes.	

		Peak 1	Peak 2	Peak 3	Peak 4	Peak 5	Peak 6
Np 1	Peak Centroid	670 ± 2	680 ± 2	724 ± 2	758 ± 2	815 ± 2	823 ± 2
	FWHM	20 ± 0.6	12 ± 0.6	8 ± 0.6	6 ± 0.6	7 ± 0.6	18 ± 0.6
Np2	Peak Centroid	717 ± 2	734 ± 2	826 ± 2	836 ± 2	-	-
	FWHM	12 ± 0.6	9 ± 0.6	6 ± 0.6	4 ± 0.6	-	-
Np3	Peak Centroid	609 ± 2	636 ± 2	795 ± 2	-	-	-
	FWHM	6 ± 0.6	7 ± 0.6	17 ± 0.6	-	-	-
Np4	Peak Centroid	760 ± 2	770 ± 2	837 ± 2	-	-	-
	FWHM	5 ± 0.6	6 ± 0.6	5 ± 0.6	-	-	-

III. Solution Raman Spectroscopy of Np Heterocycles

Figure S12. Solution state Raman spectra for Np(V) stock containing Pyridine.

Figure S13. Solution state Raman spectra for Np(V) stock containing Piperidine.

Raman Mode (cm ⁻¹)	Np(V)Piperazine	Np(V) Morpholine	Np(V) Pyridine	Np(V) Piperidine
	765	765	767	766
	815	823	805	805
	-	839	-	827
	-	875	-	-
	1044	1022	1011	1032
	1064	1046	1031	
		1077		

Table S4. Raman band positions associated with the fitting of the Raman spectra from the Npheterocycle solutions.

Figure S14. Peak fitting for morpholine titration experiments A (Np to morph 1:2), B (Np to morph 1:6) and C (Np to morph 1:8)

Figure S15. Peak fitting for piperazine titration experiments A (Np to Pipz 1:2), B (Np to Pipz 1:4), C (Np to Pipz 1:6), and D (Np to Pipz 1:9)

Table S5: The peak center, full width half max, and total area underneath the titration experimentsfor Np(V) piperazine, and Np(V) Morpholine.

Piperazine	Center	FWHM	Area
Np:Pipz 1:2	815	12.	31787
	765	30.	249642
Np:Pipz 1:4	815	12.5	80775.
	765	29.3	241147.
Np:Pipz 1:6	815.	8.	193276.
	765	23	300480.
Np:Pipz 1:9	815	8.	389697.
	764	18.	215567
Morpholine	Peak center	FWHM	Area
Np:Morph 1:2	875	7.5	2299
	839	7.5	3440
	823	7.3	81682

	766	20.4	41518
Np:Morph 1:6	875	6.5	3435
	839	8	7068
	823	7	147716
	765	17	33669
Np:Morph 1:8	875	7.5	7829
	839	7.5	10320
	823	7.3	280538
	765	14	24219

IV. Details on Computational Analysis

a. XYZ Coordinates of DFT-Optimized Structures

[Np	$O_2Cl_4]^{3-1}$						
Np	-0.0000318	-0.0002877	-0.0000670	Cl	-0.0296995	-2.7957120	-0.4139549
Cl	-0.5015225	0.4209561	-2.7483018	0	-1.7865627	-0.0265642	0.3141238
0	1.7865493	0.0259561	-0.3136038	Cl	0.0299151	2.7964836	0.4133047
Cl	0.5013522	-0.4208319	2.7484991				

[NpO₂Cl₄]-1APipz (Long Pip)

Ν	2.2217106	-1.1223717	-1.4598314
Η	2.5114927	-0.4215675	-2.1462156
Η	2.7868979	-1.9494427	-1.6595999
Ν	0.2119316	0.2277783	0.0791736
Η	-0.4189265	1.0436615	0.3198584
Η	-0.1070492	-0.4792286	0.7730667
С	0.7655941	-1.4510606	-1.6474980
Η	0.5482350	-2.3016071	-1.0035146
Η	0.6174595	-1.7428241	-2.6837406
С	-0.0883461	-0.2479621	-1.3042673
Η	0.0965527	0.5815464	-1.9858805
Η	-1.1447918	-0.5082903	-1.3516709
С	1.6526046	0.5617530	0.2659548

[NpO₂Cl₄]-1BPipz (Short Pip)

Ν	-1.8014701	1.2144320	1.6768841
Η	-1.0584588	1.9079669	1.7931177
Η	-2.5746804	1.5444381	2.2571584
С	-0.2164056	-0.6499254	1.2944602
Η	0.6801618	-0.0302951	1.3467452
Η	0.0468243	-1.6585478	1.6037786
С	-1.3348310	-0.1264023	2.1729185
Η	-2.2025286	-0.7837923	2.1643120
Η	-0.9894636	-0.0050471	3.1962064
Np	3.1531803	-0.6705959	-1.9756154
Cl	2.0694381	1.7167543	-2.9384930
Cl	2.9728776	-1.7859615	-4.5318953
Cl	3.2541881	0.4938666	0.5782312

NpO₂Cl₄-2Pipz

Ν	5.5107435	-2.1692555	-2.7883066
Η	5.8197189	-1.5621412	-3.5514304
Η	6.1351225	-2.9773987	-2.8134436
Ν	3.3014130	-0.7304490	-1.6381633
Η	2.6309090	0.0899438	-1.6025554
Η	2.9516283	-1.3327929	-0.8780407
С	4.0961426	-2.6185715	-3.0312644

ŀ	ł	1.8121168	0.8502382	1.3026734
ŀ	ł	1.8800283	1.4152620	-0.3716958
(2	2.5232980	-0.6330288	-0.0700152
ŀ	ł	3.5750074	-0.3623616	-0.0297132
ŀ	ł	2.3440520	-1.4679958	0.6046710
N	١p	-3.1473369	1.1702687	1.7834446
(21	-4.6153819	3.4780259	1.2781240
(21	-3.9530373	0.0755799	-0.6640060
(21	-2.2297610	2.1598566	4.2150128
(21	-1.5928250	-1.2035397	2.2104922
()	-4.5627479	0.4167332	2.6128425
()	-1.6867773	1.9105770	0.9323349

Cl	4.2096425	-3.0502267	-0.9830966
0	1.4462333	-1.2913953	-1.6156703
0	4.8217008	-0.0717247	-2.3315593
Ν	-0.6342150	-0.6925759	-0.1408709
Η	-1.3607735	-1.3974122	-0.2753638
Η	0.2089336	-0.9896786	-0.7434595
С	-2.2362912	1.1653657	0.2383765
Η	-3.1166284	0.5265794	0.1965769
Η	-2.5109593	2.1719069	-0.0656561
С	-1.1121514	0.6365993	-0.6292587
Η	-0.2510458	1.3051519	-0.6363183
Η	-1.4632777	0.5205196	-1.6515086

Η	3.8721919	-3.3760152	-2.2820564
Η	4.0518712	-3.0712957	-4.0182567
С	3.1503034	-1.4379638	-2.9477458
Η	3.3476235	-0.7117476	-3.7344641
Η	2.1186850	-1.7722768	-3.0363721
С	4.7054637	-0.2863996	-1.3929705
Η	4.7591806	0.1631236	-0.4041250

Η	4.9402059	0.4741412	-2.1360138
С	5.6638154	-1.4580213	-1.4721828
Η	6.6913443	-1.1129716	-1.3935884
Η	5.4725969	-2.1922850	-0.6920252
Ν	-4.7320813	2.0347765	3.6650496
Η	-4.0258324	2.7738046	3.7044132
Η	-5.3955951	2.2523864	4.4105381
С	-3.1380259	0.3406313	2.8130148
Η	-2.2905284	1.0248699	2.7554880
Η	-2.7581442	-0.6662496	2.9680800
С	-4.0946369	0.6992194	3.9320876
Η	-4.9036853	-0.0228405	4.0271596
Η	-3.5618533	0.7637753	4.8772042
Np	-0.3291664	0.6353648	-0.9300323

NpO₂Cl₂-3Pipz

2.5285188	-5.4664634	-2.0627774
3.1979888	-4.9826577	-2.6664435
2.7584922	-6.4587367	-2.1437275
0.9192306	-3.3547691	-0.9699857
0.6200092	-2.3595495	-0.8573161
0.2220423	-3.8464433	-0.3706857
1.1285507	-5.2369980	-2.5594407
0.4762408	-5.8953185	-1.9882917
1.0907117	-5.5218563	-3.6073455
0.7449109	-3.7802971	-2.3936423
1.3632798	-3.1320164	-3.0138776
-0.2983855	-3.6408286	-2.6688361
2.3138175	-3.5719688	-0.4792295
2.3590722	-3.2918687	0.5707689
2.9707093	-2.9124659	-1.0450887
2.7101772	-5.0263736	-0.6368373
3.7551995	-5.1636669	-0.3727435
2.0984769	-5.6831442	-0.0212063
-2.0909990	-1.1483472	0.3884726
-2.3673012	1.6586190	0.2373180
-3.3080869	-1.4830641	-2.0387854
-0.7844392	-0.8010736	2.8720488
-1.6694348	-3.9077255	0.6597406
-3.6513954	-1.2940923	1.2598257
	2.5285188 3.1979888 2.7584922 0.9192306 0.6200092 0.2220423 1.1285507 0.4762408 1.0907117 0.7449109 1.3632798 -0.2983855 2.3138175 2.3590722 2.9707093 2.7101772 3.7551995 2.0984769 -2.0909990 -2.3673012 -3.3080869 -0.7844392 -1.6694348 -3.6513954	2.5285188-5.46646343.1979888-4.98265772.7584922-6.45873670.9192306-3.35476910.6200092-2.35954950.2220423-3.84644331.1285507-5.23699800.4762408-5.89531851.0907117-5.52185630.7449109-3.78029711.3632798-3.1320164-0.2983855-3.64082862.3138175-3.57196882.3590722-3.29186872.9707093-2.91246592.7101772-5.02637363.7551995-5.16366692.0984769-5.6831442-2.0909990-1.1483472-2.36730121.6586190-3.3080869-1.4830641-0.7844392-0.8010736-1.6694348-3.9077255-3.6513954-1.2940923

Cl	-1.3130395	3.0122252	-1.9151109
Cl	-0.6167000	-0.5676757	-3.4057382
Cl	-0.0223081	1.7986703	1.5639473
Cl	0.7608065	-1.7674779	0.0297866
0	-2.0333666	0.1133244	-0.4690300
0	1.3829305	1.1322018	-1.3878471
Ν	-3.8245887	0.3830064	1.4824928
Η	-4.5148024	-0.3673485	1.4185993
Η	-3.1102249	0.2120909	0.7105455
С	-5.4371498	2.0681433	2.3381736
Η	-6.2664325	1.3659379	2.4028501
Η	-5.8296288	3.0704473	2.1885883
С	-4.4752950	1.7060378	1.2250195
Η	-3.6765638	2.4408821	1.1255224
Η	-5.0130471	1.6461734	0.2822032

0	-0.4683776	-0.9868652	-0.5341283
Ν	-0.1591873	3.4903995	-3.7016106
Н	0.1128401	4.1601341	-4.4237123
Η	-0.7924876	4.0016234	-3.0819316
Ν	-0.4313189	3.0596143	5.8041652
Н	-0.6186005	4.0645142	5.8451744
Η	-0.0543556	2.8162104	6.7220972
С	-0.8818005	2.3343879	-4.3364549
Η	-0.2202469	1.9270741	-5.0990005
Η	-1.7796050	2.7191746	-4.8126573
С	0.0409337	3.0608956	3.3711777
Η	-0.1941138	4.1164566	3.2432148
Η	0.7650417	2.7689318	2.6141279
С	1.0607988	3.0495168	-2.9423401
Н	1.4924983	3.9222707	-2.4596980
Н	1.7667099	2.6610500	-3.6741221
С	0.6003208	2.7704633	4.7496916
Η	0.8839455	1.7251918	4.8611521
Η	1.4672635	3.3957661	4.9453176
Ν	-0.0272552	0.8538091	-2.5397780
Н	-0.2857656	0.1559308	-1.7909655
Н	0.6044181	0.3688409	-3.1795688
Ν	-1.2184356	2.2837137	3.1544220
Н	-1.0121438	1.2567049	3.1557926

Η	-1.6009583	2.4496844	2.2073227
С	0.6896708	2.0096890	-1.9042717
Η	0.0204214	2.4101110	-1.1435590
Η	1.5907143	1.6340499	-1.4257038
С	-1.7128144	2.3065352	5.5759092
Η	-1.4908387	1.2498970	5.7161594
Η	-2.4273120	2.6218796	6.3314586

NpO₂Cl₄-4Pipz

Ν	4.1928635	-4.4701144	-1.6539485
Н	4.7989783	-3.8746972	-2.2239706
Н	4.6085736	-5.4025744	-1.6996665
Ν	2.1539048	-2.6687419	-0.7162650
Η	1.7010802	-1.7273265	-0.6572038
Η	1.5046627	-3.2544031	-0.1610252
С	2.8096316	-4.5077592	-2.2405880
Η	2.2522007	-5.2658392	-1.6936028
Η	2.8912637	-4.8086199	-3.2814839
С	2.1601023	-3.1434207	-2.1388240
Η	2.6958449	-2.4012941	-2.7294726
Η	1.1306482	-3.1903728	-2.4864612
С	3.5276979	-2.6356609	-0.1233821
Η	3.4458286	-2.3607756	0.9258245
Η	4.0935911	-1.8678919	-0.6490710
С	4.1933364	-3.9934820	-0.2293776
Η	5.2245995	-3.9324969	0.1072050
Η	3.6704877	-4.7450135	0.3583085
Ν	-6.4077632	-0.8580231	3.9269899
Η	-5.7170691	-0.3143658	4.4503058
Η	-7.2028980	-0.9647572	4.5599096
С	-4.7170587	-2.0898237	2.5962794
Η	-3.8689221	-1.5416576	3.0068867
Η	-4.3815906	-3.0793497	2.2966062
С	-5.8517861	-2.2146435	3.5925222
Η	-6.6755454	-2.8061501	3.1970359
Η	-5.4968406	-2.6695646	4.5133548
Np	-1.2379535	-0.6827780	-0.2953427
Cl	-1.5318252	1.9822083	-0.9169943
Cl	-1.0837800	-1.2403944	-2.9760376
Cl	-1.3501964	-0.0707560	2.4268353
Cl	-0.7191085	-3.3289603	0.3071579
0	-3.0323969	-0.9948862	-0.2707791

С	-1.2488769	1.3028015	-3.2897835
Η	-1.6986588	0.4340066	-3.7626918
Η	-1.9455236	1.6957721	-2.5508999
С	-2.2537027	2.5945008	4.1897539
Η	-2.5326909	3.6406516	4.0736815
Η	-3.1278932	1.9757179	4.0003449

0	0.6085248	-0.3479499	-0.3414514
Ν	-5.1693185	-1.3506574	1.3740671
Η	-5.8851895	-1.8920363	0.8846573
Η	-4.3636604	-1.2492986	0.7045405
С	-6.8420228	-0.0981205	2.7043322
Η	-7.6926476	-0.6313068	2.2841860
Η	-7.1621006	0.8916795	3.0185591
С	-5.6985957	0.0078979	1.7161412
Η	-4.8663364	0.5840418	2.1205246
Η	-6.0442217	0.4847820	0.8025880
Ν	1.4585411	3.8032710	-4.7513562
Η	1.9798704	4.2990813	-5.4771835
Η	0.8782517	4.5154518	-4.3008219
Ν	2.6022715	3.2623062	3.5816285
Η	3.4570739	3.5096823	3.0763488
Η	2.6445773	3.7855137	4.4583522
С	0.5899152	2.7553026	-5.3882577
Η	1.2411077	2.1235202	-5.9891574
Η	-0.1205100	3.2558555	-6.0406350
С	2.4602644	0.9809885	2.6044109
Η	3.3532815	1.0628900	1.9867144
Η	2.3020288	-0.0634921	2.8652729
С	2.4216455	3.2173409	-3.7599136
Η	2.9681674	4.0328359	-3.2941746
Η	3.1182767	2.5959731	-4.3192614
С	2.5844318	1.7908708	3.8808763
Η	1.7491617	1.6132152	4.5554478
Η	3.5106727	1.5388082	4.3903397
Ν	0.8228144	1.3696342	-3.3476905
Η	0.2980651	0.8456676	-2.6299551
Η	1.4079767	0.6796851	-3.8244674
Ν	1.2915317	1.4367622	1.7839337
Η	0.3979506	1.1535852	2.2420448

Η	1.2496816	0.8968990	0.8952747
С	1.6765369	2.4228665	-2.7062893
Η	1.0087399	3.0482817	-2.1160022
Η	2.3903750	1.9318860	-2.0491664
С	1.3965503	3.6931774	2.7969806
Η	0.5279179	3.5275734	3.4315081
Н	1.4864514	4.7555389	2.5878259

С	-0.1490826	1.9653058	-4.3294899
Н	-0.7034756	1.1514004	-4.7889040
Н	-0.8367139	2.5829422	-3.7540546
С	1.3103017	2.9088816	1.5048603
Н	2.1652458	3.1116834	0.8607607
Н	0.3951108	3.1641690	0.9743305

V. Electrochemical analysis

Figure S17. Overlay displaying varying scan rates of a 33.3mM Np(V)O₂ solution with added morpholine. The potential was measured against <u>Ag|AgCl</u>.

Figure S18. Overlay displaying varying scan rates of a 33.3mM Np(V)O₂ solution with added piperidine The potential was measured against <u>Ag|AgCl</u>.

Figure S19. Overlay displaying varying scan rates of a 33.3mM Np(V)O₂ solution with added pyridine. The potential was measured against <u>Ag|AgCl</u>.

Figure S20. Overlay displaying varying scan rates of the 33.3mM Np(V)O₂ stock solution . The potential was measured against <u>Ag|AgCl</u>.