Supporting Information

for

Temperature-dependent hysteretic two-step spin crossover in two-

dimensional Hofmann-type compounds

Yue Li,^a Min Liu,*^b Zi-Shuo Yao^c and Jun Tao*^{ac}

^aCollege of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, People's Republic of China. E-mail: taojun@bit.edu.cn
^bSchool of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan Province, People's Republic of China. E-mail: liuquanusc@126.com
^cKey Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.

		Compound 1		Compound 2				
Temp / K	298	195	85	298	190	89		
C 1	FePdC ₂₈ N ₈ O ₃	$Fe_2Pd_2C_{56}N_{16}$	$Fe_2Pd_2C_{56}N_1$	$Fe_2Pt_2C_{56}N_{16}$	FePtC ₂₈ N ₈ O ₃	FePtC ₂₈ N ₈ O ₃		
formula	H ₂₆	O ₆ H ₅₆	₆ O ₆ H ₅₆	O ₆ H ₅₆	H ₂₆	H ₂₆		
$M_{ m r}$	684.82	1369.64	1369.64	1546.98	773.49	773.49		
cryst syst		orthorhombic		orthorhombic				
space group	Cmmm	Imma	Imma	Imma	Cmmm	Cmmm		
<i>a</i> , Å	7.4125(6)	7.2795(5)	14.6772(11)	7.4043(4)	7.2305(3)	7.1424(4)		
b, Å	28.588(3)	14.9441(13)	7.1611(4)	15.1012(6)	28.3930(14)	28.216(3)		
<i>c</i> , Å	7.5142(6)	28.394(2)	28.221(2)	28.6158(14)	7.3865(5)	7.3155(7)		
a, deg	90	90	90	90	90	90		
β , deg	90	90	90	90	90	90		
γ, deg	90	90	90	90	90	90		
<i>V</i> , Å ³	1592.3(2)	3088.8(4)	2966.2(3)	3199.6(3)	1516.42	1474.3(2)		
Ζ	2	2	2	2	2	2		
$D_{\rm c}$, g cm ⁻³	1.316	1.356	1.412	1.494	1.576	1.621		
μ , mm ⁻¹	1.048	1.080	1.125	4.848	5.115	5.261		
<i>F</i> (000)	632	1264	1264	1392	696	696		
goodness-								
of-fit on F^2	1.014	1.177	1.169	1.060	1.067	1.132		
$R1 (I \ge$	0.00.1-	.	0.0.5-5					
$2\sigma(I))^{a}$	0.0345	0.0741	0.0572	0.0348	0.0451	0.0295		
wR2 (all	0.0802	0 1827	0 1 4 9 1	0.0074	0 117/	0.0752		
data) ^a	0.0892	0.1827	0.1481	0.0874	0.11/6	0.0752		

 Table S1. Crystal structure and refinement details for compound 1 at 298, 195, 85 K and 2 at 298, 190, 89 K.

		1		2			
<i>T /</i> K	298	195	85	298	190	89	
Fe–N1 (Å)	2.195(3)	2.120(4)	2.033(5)	2.206(3)	2.084(7)	2.020(4)	
Fe–N3 (Å)	2.146(3)	2.068(5)	1.983(4)	2.160(4)	2.027(7)	1.966(4)	
Fe-N _{ave} (Å)	2.170(8)	2.094(45)	2.008(45)	2.183(35)	2.056(2)	1.993(4)	

Table S2. The Fe^{II}–N bond lengths in compounds 1 and 2 at different temperatures.

Table S3. Fe^{...}Fe distances in compounds **1** and **2** at different temperatures.

	1			2		
T / K	298	195	85	298	190	89
d_1 (Å)	7.51(4)	7.47(2)	7.33(9)	7.55(1)	7.38(7)	7.31(6)
d_2 (Å)	7.41(2)	7.27(9)	7.16(1)	7.40(4)	7.23(1)	7.14(2)
$d_{\mathrm{ave}}(\mathrm{\AA})$	7.46(3)	7.37(55)	7.25	7.47(75)	7.30(9)	7.22(9)

Table S4. The $\pi \cdots \pi$ interactions and the distortion parameter Σ_{Fe} of {FeN₆} moiety at different temperatures for compounds 1 and 2.

		1		2			
T/K	298	195	85	298	190	89	
$\pi \cdots \pi$ interations (Å)	3.771(9)	3.692(11)	3.653(8)	3.732(12)	3.673(17)	3.653(9)	
$\Sigma_{\text{Fe}} \text{ of } \{\text{FeN}_6\} (^{\circ})$ $\sum_{(i=1}^{12} \varphi_i - 90^{\circ} $	30.7(26)	44.2(7)	37.0	28.4	37.6	32.8	

Table S5. The pore sizes in compound 1 and 2 at different temperature.

			1			2			
T / K		298	195	85	298	190	89		
pore size	А	14.294 × 3.572	14.144 × 3.084	14.110 × 2.837	14.308 × 3.786	14.196 × 3.420	14.108 × 3.505		
	В	14.294 × 3.572	14.144 × 3.898	14.110 × 3.931	14.308 × 4.295	14.196 × 3.420	14.108 × 3.505		

Fig. S1. Thermochromism of compound 1.

Fig. S2. Thermochromism of compound 2.

Fig. S3. TGA of compounds 1 and 2.

Fig. S4. TGA of dehydrated 1 and 2.

100

Transmittance / % 00 09 09 08

20

0 4000

3500

Fig. S5. The FT-IR spectra of 1 and 2.

Fig. S6. The asymmetric unit of compound 1 at 195 K.

Fig. S7. The asymmetric unit of compound 1 at 85 K.

Fig. S8. The asymmetric unit of compound 2 at 298 K.

Fig. S9. The asymmetric unit of compound 2 at 190 K.

Fig. S10. The asymmetric unit of compound 2 at 89 K.