Supporting Information for

Hypervalent Organoiodine(V) Metal-Organic Frameworks: Syntheses, Thermal Studies and Stoichiometric Oxidants

Macguire Bryant⁺ and Christopher Richardson⁺

⁺School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia

1. Synt	thesis Procedures 2
1.1.	Synthesis of Me ₂ bpdc-I 2
1.2.	Synthesis of H_2 bpdc-I
1.3.	Synthesis of Me ₂ bpdc-IO5
1.4.	Synthesis of H_2 bpdc-IO
1.5. Thioar	Preliminary Oxidation Experiments and Control Experiments for Benzyl Alcohol and nisole
2. SCX	RD Analysis of Me ₂ bpdc-I and H ₂ bpdc-I
3. Infr	ared Spectroscopic Data
4. PXR	D Data11
5. Diff	erential Scanning Calorimetry-Thermogravimetric Analyses14
6. ¹ H M	NMR Spectroscopic Data19
7. Ma	ss Spectrometric Data22
8. XPS	Data23
8.1.	XPS spectra of H ₂ bpdc-I23
8.2.	XPS spectra of H ₂ bpdc-IO24
8.3.	XPS spectra of Iodoxybenzene, Ph-IO ₂ 26
8.4.	XPS spectra of $Zn_4O(bpdc-I)_3$ 27
8.5.	XPS spectra of Zn ₄ O(bpdc-IO _x) ₃ 29
8.6.	XPS spectra of Zr ₆ O ₄ (OH) ₄ (bpdc-I) ₆
8.7.	XPS spectra of $Zr_6O_4(OH)_4$ (bpdc-IO _x) ₆
8.8.	XPS spectra of Zr ₆ O ₄ (OH) ₄ (bpdc-IO _x) ₆ Post-Thermolysis33
9. N ₂ (Gas Sorption at 77 K35
10. G	as Chromatography – Mass Spectrometry
11. R	eferences

1. Synthesis Procedures

DMDO was synthesised according to the procedure of Taber et al.¹

1.1. Synthesis of Me₂bpdc-I

NaNO₂ (115.6 mg, 1.68 mmol) dissolved in distilled H_2O (1 cm³) and cooled to ice bath temperature was added dropwise over 30 minutes with stirring to dimethyl 2-amino-[1,1'biphenyl]-4,4'-dicarboxylate (398.4 mg, 1.40 mmol) dissolved in 1:1 distilled H₂O:16M HCl solution (7.5 cm³) at ice-bath temperature. The resulting mixture was left to stir for one hour at ice-salt bath temperature, before KI (398.4 mg, 2.40 mmol) was added with stirring. The solution was brought to room temperature and stirred for one hour, before being heated to 65 °C for three hours. The cooled solution was diluted with H₂O, before EtOAc was added. The H₂O and EtOAc solutions were agitated together, with sodium sulfite added until the organic solution became pale yellow. The organic solution was removed, placed into a separatory funnel, and washed three times with H₂O, once with brine, dried over Na₂SO₄ and rotary evaporated under reduced pressure to give a white powder. The powder was recrystallised from hexane/CH₂Cl₂ to produce colourless crystals ($R_f = 0.38, 4:1$ CH₂Cl₂:Hexane). Yield = 459.3 mg (83%). ¹H NMR δ_{H} (400 MHz; CDCl₃) 3.96 (6 H, s); 7.36 (1 H, d, J = 7.92 Hz); 7.43 (2 H, m); 8.07 (1 H, dd, J = 1.60, 7.88 Hz); 8.13 (2 H, m); 8.63 (1 H, d, J = 1.60 Hz). ¹³C NMR δ_C (101 MHz; CDCl₃) 52.92, 53.15, 98.04, 129.80, 129.95, 130.13, 130.35, 130.54, 131.60, 141.40, 148.28, 150.59, 165.96, 167.38.

1.2. Synthesis of H₂bpdc-I

1.0 M NaOH solution (2.10 cm³, 2.10 mmol) was added dropwise with stirring to dimethyl 2iodo-[1,1'-biphenyl]-4,4'-dicar boxylate (332.6 mg, 0.840 mmol) dissolved in MeOH (20 cm³) and THF (5 cm³). The solution was stirred overnight at room temperature, before MeOH and THF were rotary evaporation under reduced pressure. The aqueous solution was diluted with water then acidified with 1.0 M HCl with stirring until no more precipitation was observed. The white solid was filtered and washed with three portions of H₂O. The off-white powder was dried in the fume hood for 18 hours. Yield = 287.6 mg (93%). ESI-MS Found: $[M-H]^- = 367 m/z$. Calc. H₂bpdc-I (C₁₄H₉IO₄); C: 45.68%; H: 2.46%; Found C: 45.92%; H: 2.53%. ¹H NMR $\delta_{\rm H}$ (300 MHz; d_6 -DMSO) 7.48 (3 H, m); 8.02 (3 H, m); 8.47 (1 H, d, J = 1.64 Hz). ¹³C NMR $\delta_{\rm C}$ (100 MHz; d_6 -DMSO) 98.19, 129.24, 129.28, 130.17, 130.47, 131.82, 139.96, 147.05, 149.20, 165.70, 167.04.

1.3. Synthesis of Me₂bpdc-IO

A portion of 80 mM solution of DMDO in acetone $(3.5 \text{ cm}^3, 0.28 \text{ mmol})$ was added to Me₂bpdc-I (20 mg, 0.050 mmol) dissolved in acetone (0.5 cm^3) . The vial was then capped and placed in a 4 °C fridge overnight. The crystalline material that formed was collected by filtration and washed with acetone. Yield = 10.9 mg (53%); Calc. Me₂bpdc-IO·H₂O (C₁₆H₁₅IO₆); C: 44.86%; H: 3.06%; Found C: 44.66%; H: 2.48%.

1.4. Synthesis of H₂bpdc-IO

A portion of 80 mM DMDO in acetone solution (3.5 cm^3 , 0.28 mmol) was added to H₂bpdc-I (20 mg, 0.054 mmol) dissolved in THF (0.5 cm^3). The vial was then capped and placed in a 4°C fridge overnight, before the cap was removed and the suspension being left to dry in a fume cupboard to produce a white precipitate. Yield = 13.8 mg (67%); Calc. H₂bpdc-IO·THF ($C_{18}H_{17}IO_6$) C: 47.37%; H: 3.67%; Found C: 47.39%; H: 3.11%.

To produce crystalline samples, a portion of 105 mM solution of DMDO in acetone (3 cm^3 , 0.32 mmol) was added to H₂bpdc-I (10 mg, 0.027 mmol) dissolved in DMSO (1 cm^3). The vial was then capped and placed in a 4 °C fridge overnight. Slow evaporation of the solution over three weeks produced small colourless crystals, which were collected by filtration and washed with acetone.

1.5. Preliminary Oxidation Experiments and Control Experiments for Benzyl Alcohol and Thioanisole

We carried out some preliminary experiments to establish if an activating acid was required in the oxidation reactions using $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ and performed some control reactions with $Zr_6O_4(OH)_4(bpdc-I)_6$ *i.e.* the MOF in the unreactive I(I) state. Our method was to dry portions of $Zr_6O_4(OH)_4(bpdc-I)_6$ or $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ (100 °C for 1 hour and cooled under vacuum) in pre-weighed dry vials and use the mass of activated MOF (typically ~30 mg) to calculate ~0.25 equivalents of substrate (benzyl alcohol or thioanisole) and trifluoroacetic acid. The substrates were added in CDCl₃ (1 cm³) with and without the trifluoroacetic acid and the suspension was capped and stirred magnetically for 30 minutes then heated to 65 °C with stirring. Aliquots were taken and analysed by ¹H NMR spectroscopy at various time points and returned to the reaction.

What we found was that:

- 1. No reactions proceeded with $Zr_6O_4(OH)_4(bpdc-I)_6$ either with or without trifluoroacetic acid and for each substrate over 72 hours.
- 2. Reactions proceeded only very slowly with $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ often taking days to reach high levels of conversion.
- 3. Reactions proceeded to completion much more rapidly over a few hours for both substrates when trifluoroacetic acid was present in the same molar quantity as the substrate in reactions involving $Zr_6O_4(OH)_4(bpdc-IO_x)_6$.

2. SCXRD Analysis of Me₂bpdc-I and H₂bpdc-I

Table S2.1: Crystallographic data for Me₂bpdc-I

Identification code	Me ₂ bpdc-I
Empirical formula	C ₁₆ H ₁₃ IO ₄
Formula weight	396.16
Temperature/K	149.99(10)
Crystal system	triclinic
Spacegroup	P-1
a/Å	7.8767(4)
b/Å	10.0877(5)
c/Å	10.6978(5)
α/°	105.230(4)
β/°	107.161(4)
γ/°	102.068(4)
Volume/Å ³	744.83(7)
Z	2
ρ _{calc} g/cm ³	1.766
µ/mm⁻¹	2.162
F(000)	388.0
Crystal size/mm ³	0.4 × 0.26 × 0.07
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	4.25 to 61.32
Indexranges	$-11 \leq h \leq 11, -14 \leq k \leq 14, -15 \leq l \leq 15$
Reflections collected	14566
Independent reflections	4355 [R _{int} = 0.0312, R _{sigma} = 0.0231]
Data/restraints/parameters	4355/0/192
Goodness-of-fit on F ²	1.043
Final R indexes [I>=2σ(I)]	$R_1 = 0.0197$, $wR_2 = 0.0527$
Final R indexes [all data]	$R_1 = 0.0217$, $wR_2 = 0.0533$
Largest diff. peak/hole / e Å ⁻³	0.97/-0.67

Figure S2.1: A perspective view of the asymmetric unit of Me₂bpdc-I with thermal ellipsoids at the 50% level. Selected distances and angles: C2-I1: 2.1036(18) Å, O1-C8 = O1'-O8': 1.445(3) Å, C2-C1-C1-C6: 71.4(3)°.

 Me_2 bpdc-I crystallises in the space group P-1 with one full molecule in the asymmetric unit. All hydrogen atoms were placed geometrically and refined in riding models on their carrier carbon atoms.

Identification code	H ₂ bpdc-I·DMSO
Empirical formula	C ₁₆ H ₁₅ IO ₅ S
Formula weight	446.24
Temperature/K	150.00(10)
Crystal system	triclinic
Spacegroup	P-1
a/Å	8.19869(18)
b/Å	8.27594(19)
c/Å	13.9191(2)
α/°	86.9929(16)
β/°	74.1903(17)
γ/°	69.153(2)
Volume/Å ³	848.18(3)
Z	2
ρ _{calc} g/cm ³	1.747
µ/mm⁻¹	2.032
F(000)	440.0
Crystal size/mm ³	0.38×0.32×0.09
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.274 to 61.406
Indexranges	$-11 \leq h \leq 11, -11 \leq k \leq 11, -19 \leq l \leq 18$
Reflections collected	16754
Independent reflections	4989 [R _{int} = 0.0184, R _{sigma} = 0.0202]
Data/restraints/parameters	4989/36/248
Goodness-of-fit on F ²	1.039
Final R indexes [I>=2σ (I)]	$R_1 = 0.0262$, $wR_2 = 0.0640$
Final R indexes [all data]	$R_1 = 0.0342$, $wR_2 = 0.0676$
Largest diff. peak/hole / e Å ⁻³	0.59/-1.39

Table S2.2: Crystallographic data for H₂bpdc-I

 H_2 bpdc-I crystallises from DMSO solution as a disordered hydrogen-bonded solvate. The two positions of the DMSO were modelled together with the positions of the hydrogen of the carboxylic acid [0.544(3) : 0.456(3)]. The DMSO molecules were refined as rigid groups. All hydrogens were placed geometrically and allowed to ride on their carrier atoms. The hydrogen bond distances and angles are given in Table S2.3 below.

Table S2.3: Hydrogen Bonds for H_2 bpdc-I·DMSO.

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
04	H4	O31	0.82	1.81	2.6258(18)	176.7
14 14 4 14 7						

¹1-X,1-Y,2-Z

Figure S2.2: A perspective view, with ellipsoids at the 50% level, of the asymmetric unit of H₂bpdc-I showing the nature of the hydrogen bonding between the carboxylic acid and the disordered DMSO molecule. The minor disordered component is coloured blue for clarity. Selected distances and angles: C2-I1: 2.1035(17) Å; H1-O5: 1.716 Å; H2-O6: 1.693 Å; C2-C1-C1'-C2': 55.55(19)°.

3. Infrared Spectroscopic Data

Figure S3.1: Infrared spectra of Me_2 bpdc-I (blue) and Me_2 bpdc-IO_x (red) in KBr disks.

Figure S3.2: Detail infrared spectra of Me_2 bpdc-I (blue) and Me_2 bpdc-IO_x (red) between 840 cm⁻¹ and 700 cm⁻¹. The I=O stretch is assigned as the band at 790 cm⁻¹.²

Figure S3.3: Infrared spectra of H₂bpdc-I (blue) and H₂bpdc-IO (red) in KBr disks.

Figure S3.4: Detail infrared spectra of H_2 bpdc-I (blue) and H_2 bpdc-IO (red) between 840 cm⁻¹ and 700 cm⁻¹. I=O stretch is typically between 740-780 cm⁻¹.²

4. PXRD Data

Figure S4.1: Calculated PXRD pattern of $Zn_4O(bpdc-I_2)_3$ (black),³ and experimental PXRD patterns of $Zn_4O(bpdc-I)_3$ from acetone (blue), $Zn_4O(bpdc-IO_x)_3$ after activation (red, intensity multiplied by 3), and $Zn_4O(bpdc-IO_x)_3$ after thermolysis (green).

Figure S4.2: Calculated PXRD pattern of UiO-67 (black),⁴ and PXRD patterns of as synthesised $Zr_6O_4(OH)_4(bpdc-I)_6$ (blue), $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ under DMF (red), and $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ after thermolysis (green).

Figure S4.3: PXRD pattern of Me₂bpdc-IO.

Figure S4.4: PXRD patterns of MOF samples before and after reaction with thioanisole and trifluoroacetic acid in $CDCI_3$; $Zr_6O_4(OH)_4$ (bpdc-I)₆ before (blue) and after (green); $Zr_6O_4(OH)_4$ (bpdc-IO_x)₆ before (red) and after (purple).

Figure S4.5: PXRD patterns of MOF samples before and after reaction with benzyl alcohol and trifluoroacetic acid in $CDCI_3$; $Zr_6O_4(OH)_4$ (bpdc-I)₆ before (blue) and after (green); $Zr_6O_4(OH)_4$ (bpdc-IO_x)₆ before (red) and after (purple).

5. Differential Scanning Calorimetry-Thermogravimetric Analyses

Safety note: Care must be taken when dealing with hypervalent iodine compounds as they are potentially explosive. We carried out thermal studies on small amounts of compounds and in the controlled environment of the DSC-TGA furnace.

Figure S5.1: TG (blue line) and DSC (red line) traces of Me₂bpdc-I under a flow of N₂ (20 cm³/min).

Figure S5.2: TG (blue line) and DSC (red line) traces of Me_2 bpdc-IO under a flow of N_2 (20 cm³/min). DSC response peaks at 19.60 mW/mg.

Figure S5.3: TG (blue line) and DSC (red line) traces of H₂bpdc-I under a flow of N₂ (20 cm³/min).

Figure S 5.4: TG (blue line) and DSC (red line) traces of H_2 bpdc-IO crystallized from DMSO under a flow of N_2 (20 cm³/min). DSC response peaks at 23.80 mW/mg.

Figure S5.5: TG (blue line) and DSC (red line) traces of $PhIO_2$. Sample detonated at 233.4 °C. Performed on 3.1997 mg of material, heating at 5 °C/min to 300 °C under a flow of N₂ (40 cm³/min). Decomposition is consistent with literature value of 230 °C.⁵

Figure S5.6: TG (blue line) and DSC (red line) traces of activated $Zn_4O(bpdc-I)_3$ under a flow of N_2 (20 cm³/min).

Figure S5.7: TG (blue line) and DSC (red line) traces of activated $Zn_4O(bpdc-IO_x)_3$ under a flow of N_2 (20 cm³/min).

Figure S5.8: TG (blue line) and DSC (red line) traces of activated $Zr_6O_4(OH)_4(bpdc-I)_6$ under a combined flow of N_2 (20 cm³/min) and compressed air (20 cm³/min).

Figure S5.9: TG (blue line) and DSC (red line) traces of activated $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ under a combined flow of N₂ (20 cm³/min) and compressed air (20 cm³/min).

Table S5.1: Comparison of experimental mass losses from the TG-DSC traces below 300 °C, and the
calculated mass losses for O_3H_2 attached to each iodo group (-I=O(OH) ₂).

MOF	Experimental Mass Loss (%)	Calculated mass Loss (%)
Zn ₄ O(bpdc-IO _x) ₃	7.88	6.87
Zr ₆ O ₄ (OH) ₄ (bpdc-IO _x) ₆	10.88	9.28

6. ¹H NMR Spectroscopic Data

Figure S6.1: ¹H NMR spectra of H₂bpdc-I (black trace), and digested samples of MOF after heating for 1 hour to 210 °C under N₂ *i.e.* this means heating above the thermal events in the MOFs. The spectrum shown in green is the digestion after heating $Zn_4O(bpdc-IO_x)_3$ and the spectrum shown in blue is the digestion after heating $Zr_6O_4(OH)_4(bpdc-IO_x)_6$. The former complex requires digestion in DCI / d_6 -DMSO, the latter complex requires digestion in D₂SO₄ / d_6 -DMSO.

Figure S6.2: ¹H NMR spectra of the CDCl₃ solution in the reaction of Ph-IO₂ with thioanisole and trifluoroacetic acid after 0, 1.5, 6, 16, 30, 50 and 74 hours. Peak in red corresponds to CH₃ of thioanisole (2.49 ppm).⁶ The peak that corresponds to CH₃ of (methylsulfinyl)benzene (2.73 ppm),⁷ and the peak that corresponds to CH₃ of (methylsulfonyl)benzene (3.08 ppm),⁸ are noticeably absent.

Figure S6.3: ¹H NMR spectra of the CDCl₃ solution in the reaction of Ph-IO₂ with benzyl alcohol and trifluoroacetic acid after 0, 1.5, 6, 16, 30 and 50 hours. Peak in orange corresponds to CH₂ of benzyl alcohol (4.71 ppm),⁹ peak in green corresponds to CH of benzaldehyde (10.03 ppm).¹⁰

7. Mass Spectrometric Data

Figure S7.1: Low-resolution negative-mode electrospray ionisation mass spectra of H_2 bpdc-I, and digested samples of zinc and zirconium MOFs ($Zn_4O(bpdc-IO_x)_3$ and $Zr_6O_4(OH)_4(bpdc-IO_x)_6$, respectively) recovered after heating at 210 °C under N_2 for 1 hour *i.e.* the ESI data were recorded after the thermolysis events. [Hbpdc-I]⁻ = 367 m/z.

8. XPS Data

8.1. XPS spectra of H₂bpdc-I

Figure S8.1: XPS survey spectrum of H₂bpdc-I, with selected peaks indicated.

Figure S8.2: XPS spectrum of C 1_s of H₂bpdc-I, showing C-C peak (referenced to 284.8 eV) and O=C-O (289.2 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to C-C, yellow line represents calculated peak corresponding to O=C-O, grey line represents background.

Figure S8.3: XPS spectrum of $I 3_{d5/2}$ of H_2 bpdc-I showing the iodine(I) peak (620.2 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to iodine(I), grey line represents background.

8.2. XPS spectra of H₂bpdc-IO

Figure S8.4: XPS survey spectrum of H₂bpdc-IO, with selected peaks indicated.

Figure S8.5: XPS spectrum of C 1_s of H₂bpdc-IO, showing C-C peak (referenced to 284.8 eV) and O=C-O (288.1 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to C-C, yellow line represents calculated peak corresponding to O=C-O, grey line represents background.

Figure S8.6: XPS spectrum of $I 3_{d5/2}$ of H_2 bpdc-IO showing iodine(I) peak (620.0 eV) and iodine(III) peak (622.1 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to iodine(I), yellow line represents calculated peak corresponding to iodine(I), grey line represents background.

8.3. XPS spectra of Iodoxybenzene, Ph-IO₂

Figure S8.7: XPS survey spectrum of iodoxybenzene (Ph-IO₂), with selected peaks indicated.

Figure S8.8: XPS spectrum of C 1_s of iodoxybenzene (Ph-IO₂), showing C-C peak (284.8 eV) and O=C-O (288.4 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to C-C, yellow line represents calculated peak corresponding to O=C-O, grey line represents background.

Figure S8.9: XPS spectrum of $I 3_{d5/2}$ of iodoxybenzene (Ph-IO₂) showing iodine(I) peak (620.6 eV) and iodine(V) peak (623.4 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to iodine(I), yellow line represents calculated peak corresponding to iodine(V), grey line represents background.

8.4. XPS spectra of Zn₄O(bpdc-I)₃

Figure S8.10: XPS survey spectrum of Zn₄O(bpdc-I)₃, with selected peaks indicated.

Figure S8.11: XPS spectrum of C 1_s of Zn₄O(bpdc-I)₃ showing C-C peak (284.8 eV) and O=C-O peak (288.7 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to C-C, yellow line represents calculated peak corresponding to O=C-O, grey line represents background.

Figure S8.12: XPS spectrum of $I 3_{d5/2}$ of $Zn_4O(bpdc-I)_3$ showing the iodine(I) peak (620.0 eV). Blue line represents raw response, grey line represents background.

8.5. XPS spectra of Zn₄O(bpdc-IO_x)₃

Figure S8.13: XPS spectrum survey of $Zn_4O(bpdc-IO_x)_3$, with selected peaks indicated.

Figure S8.14: XPS spectrum of C 1_s of $Zn_4O(bpdc-IO_x)_3$ showing C-C peak (284.4 eV) and O=C-O peak (288.4 eV). Blue line represents raw response, orange line represents calculated peak corresponding to C-C, yellow line represents calculated peak corresponding to O=C-O, grey line represents background.

Figure S8.15: XPS spectrum of $I 3_{d5/2}$ of $Zn_4O(bpdc-IO_x)_3$ showing iodine(I) peak (620.2 eV) and iodine(III) peak (623.7 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to iodine(I), yellow line represents calculated peak corresponding to iodine(V), grey line represents background.

8.6. XPS spectra of Zr₆O₄(OH)₄(bpdc-I)₆

Figure S8.16: XPS spectrum survey of Zr₆O₄(OH)₄(bpdc-I)₆, with selected peaks indicated.

Figure S8.17: XPS spectrum of C 1_s of $Zr_6O_4(OH)_4(bpdc-I)_6$ showing C-C peak (284.8 eV) and O=C-O peak (288.2 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to C-C, yellow line represents calculated peak corresponding to O=C-O, grey line represents background.

Figure S8.18: XPS spectrum of $13_{d5/2}$ of $Zr_6O_4(OH)_4(bpdc-I)_6$ showing iodine(I) peak (620.2 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to iodine(I), grey line represents background.

8.7. XPS spectra of Zr₆O₄(OH)₄(bpdc-IO_x)₆

Figure S8.19: XPS spectrum survey of $Zr_6O_4(OH)_4$ (bpdc-IO_x)₆, with selected peaks indicated.

Figure S8.20: XPS spectrum of C 1_s of $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ showing C-C peak (284.8 eV) and O=C-O peak (288.0 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to C-C, yellow line represents calculated peak corresponding to O=C-O, grey line represents background.

Figure S8.21: XPS spectrum of $I 3_{d5/2}$ of $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ showing iodine(I) peak (620.1 eV) and iodine(V) peak (623.0 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to iodine(I), yellow line represents calculated peak corresponding to iodine(V), grey line represents background.

8.8. XPS spectra of Zr₆O₄(OH)₄(bpdc-IO_x)₆ Post-Thermolysis

Figure S8.22: XPS spectrum survey of $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ post-thermolysis, with selected peaks indicated.

Figure S8.23: XPS spectrum of C 1_s of $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ post-thermolysis showing C-C peak (284.8 eV) and O=C-O peak (288.0 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to C-C, yellow line represents calculated peak corresponding to O=C-O, grey line represents background.

Figure S8.24: XPS spectrum of $I 3_{d5/2}$ of $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ post-thermolysis showing iodine(I) peak (620.4 eV) and iodine(V) peak (624.1 eV). Blue line represents raw experimental response, orange line represents calculated peak corresponding to iodine(I), yellow line represents calculated peak corresponding to iodine(I), specific terms and the peak corresponding to iodine(V), grey line represents background.

9. N_2 Gas Sorption at 77 K

Figure S9.1: N₂ sorption isotherms of $Zn_4O(bpdc-I)_3$ (dark blue), $Zn_4O(bpdc-IO_x)_3$ (light blue) and $Zn_4O(bpdc-IO_x)_3$ after thermolysis (green). Closed symbols represent adsorption, open symbols represent desorption.

BET Tables for Zinc MOFs from N₂ adsorption at 77 K.

BET summary for Zn₄O(bpdc-I)₃			
Slope	2	2.528	
Intercept	1.7	65e-03	
Correlation coefficient, r	0.9	99976	
C constant	143	33.462	
Surface Area	1376.414		
Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]	
8.01449e-03	290.2299	2.2273e-02	
9.03781e-03	295.0936	2.4728e-02	
1.00921e-02	298.8305	2.7297e-02	
1.19917e-02	303.5481	3.1992e-02	
1.52389e-02	308.8887	4.0084e-02	
2.61900e-02	317.8581	6.7698e-02	
4.00628e-02	323.3369	1.0327e-01	

BET summary for Zn₄O(bpdc-IO _x)₃		
Slope	Slope 2.851	
Intercept	2.2	230e-03
Correlation coefficient, r	0.9	999993
C constant	1279.495	
Surface Area	1220.668	
Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
8.05460e-03	256.3673	2.5342e-02
9.11816e-03	260.2868	2.8287e-02
1.00408e-02	262.9024	3.0868e-02
1.21162e-02	267.2554	3.6718e-02
1.51245e-02	271.7263	4.5219e-02
2.74980e-02	281.3195	8.0419e-02
4.09215e-02	286.7966	1.1903e-01

Figure S9.2: N₂ sorption isotherms of $Zr_6O_4(OH)_4(bpdc-I)_6$ (purple), $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ (magenta); and $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ after thermolysis (dark green), $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ after oxidation of benzyl alcohol (brown), $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ after oxidation of thioanisole (light green). Closed symbols represent adsorption, open symbols represent desorption.

Figure S9.3: Pore diameter distributions of $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ after thermolysis (dark green) and after reaction with benzyl alcohol (brown) and thioanisole (green). Pore diameters derived from QSDFT equilibrium model kernel with slit/cylindrical pores.

Table S9.1: Accessible BET surface areas and pore volumes of $Zr_6O_4(OH)_4(bpdc-I)_6$, $Zr_6O_4(OH)_4(bpdc-IO_x)_6$, and $Zr_6O_4(OH)_4(bpdc-IO_x)_6$ after thermolysis and reactions with benzyl alcohol and thioanisole from N₂ gas adsorption measurements at 77 K.

MOF	BET Surface Area (m ² /g)	Pore Volume (cm ³ /g)
Zr ₆ O ₄ (OH) ₄ (bpdc-I) ₆	1423	0.55
Zr ₆ O ₄ (OH) ₄ (bpdc-IO _x) ₆	1335	0.52
$Zr_6O_4(OH)_4(bpdc-IO_x)_6 \rightarrow Zr_6O_4(OH)_4(bpdc-I)_6$ <i>i.e.</i> Post heating to 210 °C for 1 hour	1484	0.59
$Zr_6O_4(OH)_4(bpdc-IO_x)_6 \rightarrow Zr_6O_4(OH)_4(bpdc-I)_6$ <i>i.e.</i> Post reaction with thioanisole	1144	0.45
$Zr_6O_4(OH)_4(bpdc-IO_x)_6 \rightarrow Zr_6O_4(OH)_4(bpdc-I)_6$ <i>i.e.</i> Post reaction with benzyl alcohol	1251	0.49

BET summary for Zr₀O₄(OH)₄(bpdc-I)₀			
Slope	2	.447	
Intercept	8.0	01e-04	
Correlation	0.9	99996	
C constant	3059.422		
Surface Area	1422.674		
Relative Pressure	Volume @	1 / [W((Po/P) -	
8.10410e-03	316.6463	2.0645e-02	
9.06373e-03	318.5324	2.2975e-02	
1.00617e-02	320.2085	2.5397e-02	
1.21245e-02	321.3607	3.0558e-02	
1.51515e-02	324.9145	3.7885e-02	
2.91027e-02	333.8645	7.1837e-02	
4.23456e-02	338.4838	1.0452e-01	

BET summary for			
Zr ₆ O₄(OH)₄(bpdc-IO _X) ₆			
Slope	2	.606	
Intercept	9.5	71e-04	
Correlation	0.9	99997	
C constant	2724.238		
Surface Area	1335.627		
Relative Pressure	Volume @	1/[W((Po/P) -	
7.09460e-03	294.1801	1.9434e-02	
8.02759e-03	296.2355	2.1858e-02	
9.05526e-03	298.1482	2.4523e-02	
1.00549e-02	299.7367 2.7113e-02		
1.20698e-02	300.6045	3.2519e-02	
1.49927e-02	303.7922	4.0089e-02	
3.06928e-02	313.0618	8.0929e-02	

BET summary for		
$Zr_6O_4(OH)_4(bpdc-IO_X)_6$ after		
heating to 210 °C		
Slope	2.345	
Intercept	1.244e-03	
Correlation coefficient, r	0.999999	
C constant	1885.741	
Surface Area	1484.302	
Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]
8.01227e-03	322.6822	2.0028e-02
9.00749e-03	325.1330	2.2368e-02
9.98093e-03	327.2129	2.4652e-02
1.20631e-02	330.5669	2.9555e-02
1.50712e-02	334.4571	3.6606e-02
3.34983e-02	348.0108	7.9686e-02
4.45260e-02	352.6563	1.0573e-01

BET summary for		
Zr ₆ O₄(OH)₄(bpdc-IO _x)₀		
after		
reaction with benzyl		
alcohol		
Slope	2.783	
Intercept	1.289e-03	
Correlation coefficient, r	0.999998	
C constant	2160.147	
Surface Area	1250.919	
Relative Pressure	Volume @	1/[W((Po/P) -
8.06543e-03	274.0436	2.3740e-02
9.07829e-03	276.0728	2.6552e-02
1.00237e-02	277.6829	2.9175e-02
1.20451e-02	279.8937	3.4853e-02
1.50136e-02	283.1332	4.3075e-02
3.26952e-02	293.5820	9.2119e-02
4.41789e-02	297.4688	1.2432e-01

BET summary for		
Zr ₆ O₄(OH)₄(bpdc-IO _X) ₆		
after		
reaction with		
thioanisole		
Slope	3.041	
Intercept	1.570e-03	
Correlation coefficient,	0.999996	
C constant	1938.423	
Surface Area	1144.493	
Relative Pressure	Volume @	1 / [W((Po/P) -
8.06589e-03	248.6528	2.6166e-02
9.08645e-03	250.6567	2.9271e-02
1.00111e-02	252.2099	3.2081e-02
1.21074e-02	255.7715	3.8339e-02
1.49815e-02	258.7187	4.7037e-02
3.33866e-02	268.5650	1.0290e-01
4.49873e-02	272.0372	1.3855e-01

Figure S10.1: Relative proportions of benzyl alcohol (blue) and benzaldehyde (red) according to GC-MS analysis.

Figure S10.2: Relative proportions of thioanisole (green), (methylsulfinyl)benzene (orange) and (methylsulfonyl)benzene (purple) according to GC-MS analysis.

11. References

- 1 D. F. Taber, R. A. Hassan, P. W. DeMatteo, *Organic Syntheses* **2013**, *90*, 350-357.
- 2 W. E. Dasent, T. C. Waddington, *Journal of the Chemical Society (Resumed)* **1960**, 2429-2432.
- 3 R. Babarao, C. J. Coghlan, D. Rankine, W. M. Bloch, G. K. Gransbury, H. Sato, S. Kitagawa, C. J. Sumby, M. R. Hill, C. J. Doonan, *Chemical Communications* **2014**, *50*, 3238-3241.
- 4 R. J. Marshall, C. L. Hobday, C. F. Murphie, S. L. Griffin, C. A. Morrison, S. A. Moggach, R. S. Forgan, *Journal of Materials Chemistry A* **2016**, *4*, 6955-6963.
- 5 M. S. Yusubov, A. A. Zagulyaeva, V. V. Zhdankin, *Chemistry A European Journal* **2009**, *15*, 11091-11094.
- 6 S. Perumal, R. Chandrasekaran, S. Selvaraj, M. Ganesan, D. A. Wilson, *Magnetic Resonance in Chemistry* **2000**, *38*, 55-57.
- 7 Y. Yuan, X. Shi, W. Liu, *Synlett* **2011**, *2011*, 559-564.
- 8 Abraham, R. J.; Byrne, J. J.; Griffiths, L., *Magnetic Resonance in Chemistry*, **2008**, *46*, 667-675.
- 9 R. Cano, M. Yus, D. J. Ramón, *Tetrahedron* **2011**, *67*, 8079-8085.
- 10 N. Jiang, A. J. Ragauskas, *Organic Letters* **2005**, *7*, 3689-3692.