Supporting information for

Noncentrosymmetric sulfides A₂Ba₆MnSn₄S₁₆ (A = Li, Ag): Syntheses, structures, and properties

Ruihuan Duan,*^{a,b} Hua Lin,^b Yue Wang,^c Yuqiao Zhou^d and Liming Wu*^{b,e}

a College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.

b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.

c School of Biological and Chemical Engineering, Chongqing, University of Education, Chongqing 400067, China.

d. Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.

e Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China E-mail: drh9090@126.com, wlm@bnu.edu.cn.

Figure S1. EDS spectrum for compound 1 (a) and 2 (b).

Table S1. Atomic coordinates, equivalent isotropic displacement parameters and

			-	-				
Atom	Oxidation	Wyckoff	Х	У	Z	U(eq)	sof	
1								
Bal	+2	24 <i>d</i>	0.5000	0.2500	0.9850(1)	0.01744(9)	1	
Sn1	+4	16 <i>c</i>	0.4775(1)	0.5225(1)	1.0225(1)	0.01062(2)	1	
Mn1	+2	12 <i>a</i>	0.3750	0.0000	1.2500	0.0150(7)	0.33	
Li1	+1	12 <i>a</i>	0.3750	0.0000	1.2500	0.0150(7)	0.67	
S 1	-2	16 <i>c</i>	0.3655(1)	0.1345(1)	0.8655(1)	0.0180(3)	1	
S2	-2	48 <i>e</i>	0.4331(1)	0.0815(1)	1.1131(1)	0.0137(1)	1	
2								
Bal	+2	24 <i>d</i>	1.0000	0.7500	0.9828(1)	0.0182(1)	1	
Sn1	+4	16 <i>c</i>	1.0219(1)	1.0219(1)	1.0219(1)	0.0116(1)	1	
Mn1	+2	12 <i>b</i>	0.7500	0.6250	1.0000	0.008(3)	0.33	

occupancies of compound 1 and 2.

Ag1	+1	12 <i>b</i>	0.7500	0.6250	1.0000	0.038(1)	0.67
S 1	-2	16 <i>c</i>	0.8641(1)	0.8641(1)	0.8641(1)	0.0172(4)	1
S2	-2	48 <i>e</i>	0.8898(1)	0.5658(1)	0.9158(1)	0.0153(2)	1

Table S2. Selected bond lengths (Å) and angles (deg) for compound 1 and 2.

1		2		
Ba1-S1×2	3.1233(5)	Ba1-S1×2	3.1391(7)	
Ba1-S2×2	3.2420(8)	Ba1-S2×2	3.2234(10)	
Ba1-S2×2	3.2907(8)	Ba1-S2×2	3.3071(10)	
Ba1-S2×2	3.4551(8)	Ba1-S2×2	3.4948(10)	
Sn1-S1	2.3539(14)	Sn1-S1	2.3505(17)	
Sn1-S2×3	2.4002(8)	Sn1-S2×3	2.4044(9)	
Li/Mn1-S2×4	2.4781(7)	Ag/Mn1-S2×4	2.5535(10)	
S1-Sn1-S2×3	111.16(2)	S1-Sn1-S2×3	111.85(2)	
S2-Sn1-S2×3	107.73(3)	S2-Sn1-S2×3	106.99(3)	
S2-Li/Mn-S2×4	96.744(12)	S2-Li/Cd-S2×4	96.683(14)	
S2-Li/Mn-S2×2	139.92(4)	S2-Li/Cd-S2×2	140.11(4)	

Figure S2. The environment of Ba atom in compound 1 (a) and 2 (b).

[1	2		
atom	valence	atom	valence	
Ba	2.13	Ba	2.08	
Sn	4.12	Sn	4.10	
Li	0.93	Ag	1.34	
Mn	1.89	Mn	1.54	

Table S3. Band Valence in compound 1 and 2.

Figure S3. The TGA patterns of compound 1 (a) and 2 (b) under N_2 flow.

Figure S4. Temperature-dependence of the molar magnetic susceptibility (a, black), the inverse molar magnetic susceptibility (a, red) and the experimental effective

magnetic moment (b) for compound **2**.