Supporting Information

Building Artificial Solid Electrolyte Interphase on Spinel Lithium Manganate for High Performance Aqueous Lithium-ion Batteries

Wujie Dong^{a§}, Xieyi Huang^{a§}, Yan Jin^a, Miao Xie^a, Wei Zhao^a, Fuqiang Huang^{a,b*}

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructures,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China

State Key

^bLaboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China

Prof. FQ. Huang

E-mail: huangfq@mail.sic.ac.cn (FQ. Huang)

Figure S1. Electrochemical in-situ polymerized LiPAA layer on carbon fiber.

Figure S2. (A) The relevant Randles equivalent circuit. (B) Nyquist plots of pristine $LiMn_2O_4$ $LiPAA@LiMn_2O_4$ and spanning over 0.01 Hz to 10^5 Hz after 100 cycles. (C) GCD curves of $LiMn_2O_4$ and $LiPAA@LiMn_2O_4$ after 100 cycles.

Figure S3. CV curves of (A) LiMn₂O₄ and (B) LiPAA@LiMn₂O₄ electrodes at the scan rate spanning over 0.1 mV s⁻¹ to 10 mV s⁻¹. Plot of peak current (I_p) vs. square root of scan rate ($v^{1/2}$) for (C) LiMn₂O₄ and (D) LiPAA@LiMn₂O₄.

Figure S4. Rate performance of LiPAA@LiMn₂O₄ and LiMn₂O₄ electrodes spanning before and after holding at 1.3 V (vs. SCE) for 12 h.

Figure S5. *Ex-situ* XRD before and after the overcharged LiPAA@LiMn₂O₄ and LiMn₂O₄ electrodes.