Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Ultrabroadband Red Luminescence of Mn⁴⁺ in MgAl₂O₄ Peaking at 651 nm

Haipeng Ji,¹ Xinghui Hou,¹ Maxim S. Molokeev,^{2,3} Jumpei Ueda,⁴ Setsuhisa Tanabe,⁴ Mikhail G. Brik,^{5,6} Zongtao Zhang,¹ Yu Wang,^{1,*} Deliang Chen^{1,7,*}

- 1 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- 2 Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
- 3 Siberian Federal University, Krasnoyarsk 660041, Russia
- 4 Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
- 5 CQUPT-BUL Innovation Institute & College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- 6 Institute of Physics, University of Tartu, Tartu 50411, Estonia
- 7 School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China

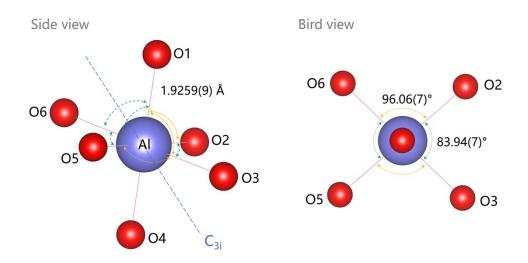


Figure S1 Al³⁺ octahedral coordination in MgAl₂O₄ (ICSD 31373) showing the interatomic distances and angles between the chemical bonds. $d_{Al-O1} = d_{Al-O2} = d_{Al-O3} = d_{Al-O4} = d_{Al-O5} = d_{Al-O6} = 1.9259(9)$ Å; $\angle O1$ -Al-O2 = $\angle O1$ -Al-O3 = $\angle O2$ -Al-O6 = $\angle O3$ -Al-O5 = $\angle O2$ -Al-O4 = $\angle O3$ -Al-O4 = $\angle O3$ -Al-O4 = $\angle O3$ -Al-O5 = $\angle O4$ -Al-O5 = $\angle O4$ -Al-O6 = 96.06(7)°, $\angle O1$ -Al-O5 = $\angle O1$ -Al-O6 = $\angle O2$ -Al-O3 = $\angle O5$ -Al-O6 = 83.94(7)°.

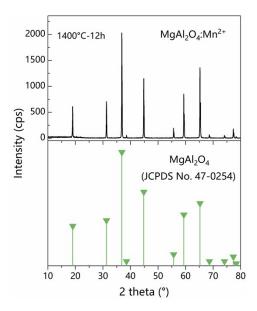
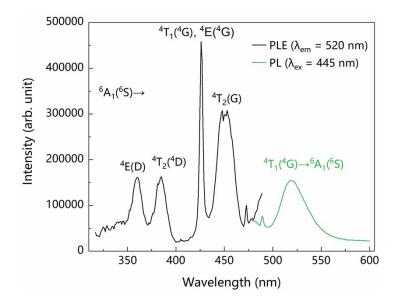



Figure S2 XRD pattern of the spinel phosphor calcined at 1400 °C for 12 h. The standard pattern for MgAl₂O₄ (JCPDS card no. 47-0254) was provided as reference.

Figure S3 Photoluminescence spectra of the MgAl₂O₄:Mn²⁺ phosphor calcined at 1400 °C for 12 h. The corresponding energy transitions were assigned based on Ref. [1].

E. H. Song, Y. Y. Zhou, Y. Wei, X. X. Han, Z. R. Tao, R. L. Qiu, Z. G. Xia and Q. Y. Zhang. A thermally stable narrow-band green-emitting phosphor MgAl₂O₄:Mn²⁺ for wide color gamut backlight display application. *J. Mater. Chem. C*, 2019, 7, 8192-8198.

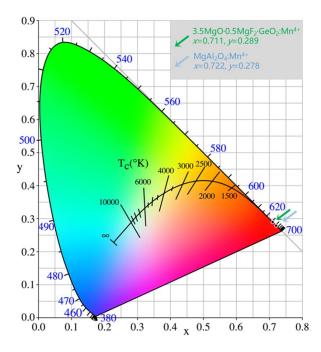


Figure S4 Chromaticity coordinate (λ_{ex} = 440 nm) of MgAl₂O₄:Mn⁴⁺ in CIE 1931 diagram. The chromaticity of the commercial 3.5MgO·0.5MgF₂·GeO₂:Mn⁴⁺ was also given.

Preparation of MgAl₂O₄:Mn⁴⁺ by the molten salt method:

MgO (A.R., Sinopharm, China) and Al₂O₃ (99.99%, γ -phase, \leq 20 nm, Aladdin, China) were used as the raw chemicals. MnCO₃ (A.R., Sinopharm, China) and LiCl·H₂O (A.R., Sinopharm, China) were used as the dopant source and the salt. MgO, Al₂O₃, and MnCO₃ were weighed according to the formula of MgAl_{1.998}Mn_{0.002}O₄ and then mixed with LiCl·H₂O in a weight ratio of 1:5. The mixture was then transferred to corundum crucibles covered with a lid and heated at 950 °C for 3 h. After cooling to room temperature, the product was washed with hot deionized water for 5 times to remove the salt, concentrated by centrifugation, and then dried in an oven at 100 °C for 12 h.