Supporting Information

The First Ln–MOF as a Trifunctional Luminescent Probe for Efficient

Sensing of aspartic acid, Fe³⁺ and DMSO

Dong-Dong Yang^a, Li-Ping Lu^{*a}, Si-Si Feng^{ab}, Miao-Li Zhu^{*ab}

aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the

Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People' s Republic of China.

luliping@sxu.edu.cn.

^bKey Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University,

Taiyuan, Shanxi 030006, People's Republic of China. miaoli@sxu.edu.cn

Corresponding Author *E-mail: luliping@sxu.edu.cn *E-mail: <u>miaoli@sxu.edu.cn</u>

Table of Contents

Fig. S1 IR spectra of complexes 1–5 (KBr, cm⁻¹).

Fig. S2 PXRD patterns of complexes 1 - 5 in the 2 θ range of 5 to 50°.

Fig. S3 The thermal curves of complex 1–5.

Fig. S4 Digital photograph of all complexes 1 – 5 under irradiation of UV light (254 nm)

Fig. S5 Luminescence spectra for 1 dispersed in various organic solvents (5 mL, 2 mg 1).

Fig. S6 Luminescence spectra for 4 dispersed in various organic solvents (5 mL, 2 mg 4).

Fig S7. The PXRD patterns of complex 5 after immersing in different organic solvents for 24h.

Fig S8. The PXRD patterns of complex **5** after immersing in aqueous solution with different pH for 24h.

Fig.S9 The PXRD patterns of **5** and the recognition of aspartic acid (a) and Fe³⁺ (b) after five recycling processes.

Fig. S10 UV-vis absorption of aqueous solution containing complex 5 and Fe³⁺.

Fig. S11 The luminescence decay lifetimes of the complexes 5 and aspartic acid treated materials.

Fig. S12 The PXRD patterns of 5 and the recognition of DMSO after soaking

Tables S1-1 to S1-5 Selected bond lengths [Å] and angles [°] for complexes 1-5**Table S2** Comparison of various MOFs sensors for the detection of aspartic acid.

Fig. S1 IR spectra of complexes 1–5 (KBr, cm⁻¹).

Fig. S2 PXRD patterns of complexes **1** - **5** in the 2θ range of 5 to 50°, showed the high phase purity of the complexes.

Fig. S3 The thermal curves of complex 1–5, indicated their good stabilities in the range of RT-400 °C.

Fig. S4 Digital photograph of all complexes 1 – 5 under irradiation of UV light (254 nm)

Fig. S5 Luminescence spectra for 1 dispersed in various organic solvents (5 mL, 2 mg 1).

Fig. S6 Luminescence spectra for 4 dispersed in various organic solvents (5 mL, 2 mg 4).

Fig S7. The PXRD patterns of complex 5 after immersing in different organic solvents for 24h.

Fig S8. The PXRD patterns of complex 5 after immersing in aqueous solution with different pH for 24h.

Fig. S9. The PXRD patterns of 5 and the recognition of aspartic acid (a) and Fe³⁺ (b) after five recycling processes.

Fig S10 UV–vis absorption of aqueous solution containing complex **5** and Fe³⁺, indicated that the fluorescence quenching mechanism is not caused by the excitation or emission spectra of the compounds overlapped.

Fig. S11 The luminescence decay lifetimes of the complexes 5 and aspartic acid treated materials.

Fig. S12. The PXRD patterns of 5 and the recognition of DMSO after soaking.

La1—O10 ⁱ	2.424 (3)	La1—O9 ^{iv}	2.509 (3)		
La1—O7 ⁱⁱ	2.432 (3)	La1—O4 ^v	2.546 (3)		
La1—O2	2.480 (3)	La1—O13	2.554 (3)		
La1—O6 ⁱⁱⁱ	2.494 (3)	La1—O14	2.620 (3)		
O10 ⁱ —La1—O7 ⁱⁱ	147.81 (10)	O9 ^{iv} —La1—O4 ^v	139.90 (9)		
O10 ⁱ —La1—O2	94.89 (9)	O10 ⁱ —La1—O13	74.30 (9)		
O7 ⁱⁱ —La1—O2	72.79 (9)	O7 ⁱⁱ —La1—O13	133.78 (9)		
O10 ⁱ —La1—O6 ⁱⁱⁱ	94.88 (9)	O2—La1—O13	139.67 (9)		
O7 ⁱⁱ —La1—O6 ⁱⁱⁱ	82.99 (9)	O6 ⁱⁱⁱ —La1—O13	72.17 (9)		
O2—La1—O6 ⁱⁱⁱ	148.15 (9)	O9 ^{iv} —La1—O13	69.07 (10)		
O10 ⁱ —La1—O9 ^{iv}	83.97 (10)	O4 ^v —La1—O13	131.90 (9)		
O7 ⁱⁱ —La1—O9 ^{iv}	117.86 (10)	O10 ⁱ —La1—O14	144.10 (10)		
O2—La1—O9 ^{iv}	71.23 (10)	O7 ⁱⁱ —La1—O14	66.53 (10)		
O6 ⁱⁱⁱ —La1—O9 ^{iv}	140.02 (9)	O2—La1—O14	111.46 (10)		
O10 ⁱ —La1—O4 ^v	73.60 (9)	O6 ⁱⁱⁱ —La1—O14	75.69 (10)		
O7 ⁱⁱ —La1—O4 ^v	74.75 (10)	O9 ^{iv} —La1—O14	82.12 (10)		
O2—La1—O4 ^v	77.95 (9)	O4 ^v —La1—O14	134.03 (10)		
O6 ⁱⁱⁱ —La1—O4 ^v	75.92 (9)	O13—La1—O14	69.82 (10)		

Tables S1-1. Selected bond lengths [Å] and angles [°] for complex 1

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) x+1, y, z; (iii) -x+1, -y, -z; (iv) x+1/2, -y+1/2,

Nd1—O2 ⁱ	2.366 (3)	Nd1—O1	2.475 (3)
Nd1—O6 ⁱⁱ	2.392 (3)	Nd1—O9 ^v	2.488 (3)
Nd1—O11 ⁱⁱⁱ	2.427 (3)	Nd1—O14	2.497 (3)
Nd1—O7 ^{iv}	2.443 (3)	Nd1—O13	2.555 (4)
O2 ⁱ —Nd1—O6 ⁱⁱ	147.63 (12)	O1—Nd1—O9 ^v	139.51 (12)
O2 ⁱ —Nd1—O11 ⁱⁱⁱ	94.36 (12)	O2 ⁱ —Nd1—O14	73.80 (12)
O6 ⁱⁱ —Nd1—O11 ⁱⁱⁱ	72.95 (12)	O6 ⁱⁱ —Nd1—O14	134.77 (12)
O2 ⁱ —Nd1—O7 ^{iv}	96.10 (12)	O11 ⁱⁱⁱ —Nd1—O14	138.70 (12)
O6 ⁱⁱ —Nd1—O7 ^{iv}	82.85 (12)	O7 ^{iv} —Nd1—O14	72.21 (11)
O11 ⁱⁱⁱ —Nd1—O7 ^{iv}	149.09 (12)	O1—Nd1—O14	69.13 (12)
O2 ⁱ —Nd1—O1	82.68 (11)	O9 ^v —Nd1—O14	131.13 (12)
O6 ⁱⁱ —Nd1—O1	118.44 (12)	O2 ⁱ —Nd1—O13	144.05 (12)
O11 ⁱⁱⁱ —Nd1—O1	70.19 (12)	O6 ⁱⁱ —Nd1—O13	67.42 (13)
O7 ^{iv} —Nd1—O1	140.04 (12)	O11 ⁱⁱⁱ —Nd1—O13	109.68 (12)
O2 ⁱ —Nd1—O9 ^v	73.75 (11)	O7 ^{iv} —Nd1—O13	77.00 (12)
O6 ⁱⁱ —Nd1—O9 ^v	74.63 (12)	O1—Nd1—O13	81.00 (13)
011 ⁱⁱⁱ —Nd1—O9 ^v	79.17 (12)	O9 ^v —Nd1—O13	135.50 (12)
O7 ^{iv} —Nd1—O9 ^v	76.03 (11)	O14—Nd1—O13	70.49 (12)

Tables S1-2. Selected bond lengths [Å] and angles [°] for complex 2

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) x-1/2, -y+1/2, z+1/2; (iv) -x+3/2, y-1/2, -z+1/2; (v) -x+2, -y, -z+1.

Tables S1-3. Selected bond lengths [Å] and angles [°] for complex 3

			-
Sm1—O2 ⁱ	2.342 (3)	Sm1—O1	2.449 (3)
Sm1—O6 ⁱⁱ	2.362 (3)	Sm1—O9 ^v	2.460 (3)
Sm1—O11 ⁱⁱⁱ	2.408 (3)	Sm1—014	2.479 (3)
Sm1—O7 ^{iv}	2.410 (3)	Sm1—O13	2.514 (3)
O2 ⁱ —Sm1—O6 ⁱⁱ	147.27 (10)	O1—Sm1—O9 ^v	139.61 (10)
O2 ⁱ —Sm1—O11 ⁱⁱⁱ	94.40 (10)	O2 ⁱ —Sm1—O14	73.63 (9)
O6 ⁱⁱ —Sm1—O11 ⁱⁱⁱ	72.69 (10)	O6 ⁱⁱ —Sm1—O14	135.33 (10)
O2 ⁱ —Sm1—O7 ^{iv}	96.95 (9)	O11 ⁱⁱⁱ —Sm1—O14	138.58 (10)
O6 ⁱⁱ —Sm1—O7 ^{iv}	82.54 (10)	O7 ^{iv} —Sm1—O14	72.13 (10)
O11 ⁱⁱⁱ —Sm1—O7 ^{iv}	149.29 (10)	O1—Sm1—O14	69.17 (10)

O2 ⁱ —Sm1—O1	82.21 (10)	O9 ^v —Sm1—O14	130.83 (9)
O6 ⁱⁱ —Sm1—O1	118.86 (10)	O2 ⁱ —Sm1—O13	144.30 (10)
O11 ⁱⁱⁱ —Sm1—O1	69.99 (10)	O6 ⁱⁱ —Sm1—O13	67.74 (10)
O7 ^{iv} —Sm1—O1	139.85 (10)	O11 ⁱⁱⁱ —Sm1—O13	108.56 (10)
O2 ⁱ —Sm1—O9 ^v	74.00 (9)	O7 ^{iv} —Sm1—O13	77.21 (11)
O6 ⁱⁱ —Sm1—O9 ^v	74.13 (10)	O1—Sm1—O13	80.60 (10)
O11 ⁱⁱⁱ —Sm1—O9 ^v	79.69 (9)	O9 ^v —Sm1—O13	135.67 (10)
O7 ^{iv} —Sm1—O9 ^v	76.21 (10)	O14—Sm1—O13	71.06 (10)

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) x-1/2, -y+1/2, z+1/2; (iv) -x+3/2, y-1/2, -z+1/2; (v) -x+2, -y, -z+1.

Eu1—O2 ⁱ	2.312 (3)	Eu1—O9 ^v	2.432 (3)
Eu1—O6 ⁱⁱ	2.342 (3)	Eu1—O1	2.434 (3)
Eu1—O11 ⁱⁱⁱ	2.381 (3)	Eu1—O14	2.441 (3)
Eu1—O7 ^{iv}	2.388 (3)	Eu1—O13	2.484 (3)
O2 ⁱ —Eu1—O6 ⁱⁱ	147.16 (10)	O9 ^v —Eu1—O1	139.36 (10)
O2 ⁱ —Eu1—O11 ⁱⁱⁱ	94.09 (10)	O2 ⁱ —Eu1—O14	73.52 (10)
O6 ⁱⁱ —Eu1—O11 ⁱⁱⁱ	72.99 (10)	O6 ⁱⁱ —Eu1—O14	135.44 (10)
O2 ⁱ —Eu1—O7 ^{iv}	97.51 (10)	O11 ⁱⁱⁱ —Eu1—O14	138.54 (10)
O6 ⁱⁱ —Eu1—O7 ^{iv}	82.32 (10)	O7 ^{iv} —Eu1—O14	71.70 (10)
O11 ⁱⁱⁱ —Eu1—O7 ^{iv}	149.75 (10)	O9 ^v —Eu1—O14	130.33 (10)
O2 ⁱ —Eu1—O9 ^v	74.18 (10)	O1—Eu1—O14	69.46 (10)
O6 ⁱⁱ —Eu1—O9 ^v	73.91 (10)	O2 ⁱ —Eu1—O13	144.15 (11)
O11 ⁱⁱⁱ —Eu1—O9 ^v	80.19 (10)	O6 ⁱⁱ —Eu1—O13	68.18 (11)
O7 ^{iv} —Eu1—O9 ^v	76.30 (10)	O11 ⁱⁱⁱ —Eu1—O13	107.83 (11)
O2 ⁱ —Eu1—O1	81.35 (10)	O7 ^{iv} —Eu1—O13	77.75 (11)
O6 ⁱⁱ —Eu1—O1	119.55 (10)	O9 ^v —Eu1—O13	136.25 (10)
O11 ⁱⁱⁱ —Eu1—O1	69.61 (10)	O1—Eu1—O13	80.30 (10)
O7 ^{iv} —Eu1—O1	139.77 (10)	O14—Eu1—O13	71.26 (10)

Tables S2-4. Selected bond lengths [Å] and angles [°] for complex 4

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) x-1/2, -y+1/2, z+1/2; (iv) -x+3/2, y-1/2, -z+1/2; (v) -x+2, -y, -z+1.

Tb1—O2 ⁱ	2.302 (4)	Tb1—O9 ^v	2.422 (4)
Tb1—O6 ⁱⁱ	2.331 (4)	Tb1—O1	2.426 (4)
Tb1—O2 ⁱ	2.302 (4)	Tb1—O9 ^v	2.421 (3)
Tb1—O6 ⁱⁱ	2.330 (3)	Tb1—O1	2.425 (4)
Tb1—O11 ⁱⁱⁱ	2.371 (3)	Tb1—O14	2.438 (4)
Tb1—O7 ^{iv}	2.375 (3)	Тb1—О13	2.468 (4)
O2 ⁱ —Tb1—O6 ⁱⁱ	147.17 (13)	O11 ⁱⁱⁱ —Tb1—O1	69.43 (13)
O2 ⁱ —Tb1—O11 ⁱⁱⁱ	94.04 (13)	O7 ^{iv} —Tb1—O1	139.57 (13)
O6 ⁱⁱ —Tb1—O11 ⁱⁱⁱ	72.79 (12)	O11 ⁱⁱⁱ —Tb1—O1	69.43 (13)
O2 ⁱ —Tb1—O7 ^{iv}	97.90 (12)	O7 ^{iv} —Tb1—O1	139.57 (13)
O6 ⁱⁱ —Tb1—O7 ^{iv}	82.49 (12)	O9 ^v —Tb1—O1	139.48 (12)
O11 ⁱⁱⁱ —Tb1—O7 ^{iv}	150.01 (13)	O2 ⁱ —Tb1—O14	73.56 (12)
O2 ⁱ —Tb1—O9 ^v	74.28 (13)	O6 ⁱⁱ —Tb1—O14	135.67 (12)
O6 ⁱⁱ —Tb1—O9 ^v	73.93 (13)	O11 ⁱⁱⁱ —Tb1—O14	138.17 (13)
O11 ⁱⁱⁱ —Tb1—O9 ^v	80.51 (12)	O7 ^{iv} —Tb1—O14	71.79 (12)
O7 ^{iv} —Tb1—O9 ^v	76.46 (12)	O9 ^v —Tb1—O14	130.43 (12)
O2 ⁱ —Tb1—O1	81.22 (13)	O1—Tb1—O14	69.24 (13)
O6 ⁱⁱ —Tb1—O1	119.36 (13)	O2 ⁱ —Tb1—O13	144.36 (13)
O7 ^{iv} —Tb1—O13	78.09 (14)	O1—Tb1—O13	79.86 (13)
O9 ^v —Tb1—O13	136.41 (13)	O14—Tb1—O13	71.57 (13)

Tables S1-5. Selected bond lengths [Å] and angles [°] for complex ${\bf 5}$

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) x-1/2, -y+1/2, z+1/2; (iv) -x+3/2, y-1/2, -z+1/2; (v) -x+2, -y, -z+1.

•				
MOFs and related materials	Analyte	K _{sv} (M ⁻¹	Detection	Ref
)	Limit (mol/L)	
Ag + @Eu-complex	aspartic acid	-	4.6×10⁻ ⁷	S1
Ce–BBAS	aspartic acid	-	2.6×10 ⁻⁷	S2
Cu/Tb@Zn-MOF	aspartic acid	-	4.132×10 ⁻⁶	S3
[[Tb(μ_6 -H ₂ cpboda)(μ_2 -OH ₂) ₂]·H ₂ O] _n	aspartic acid	9.80×10 ³	7.95×10 ⁻⁶	This work
${[Eu(L)(H_2O)_2] \cdot DMF}_n$	aspartic acid	1.09 × 10 ³	5.91×10 ⁻⁵	S4

Table S2 Comparison of various MOFs sensors for the detection of aspartic acid.

References:

S1. H. Weng, B. Yan, Sens. Actuator B, 2017, 253, 1006–1011.

S2. P. Y. Wu, M. Jiang, X. F. Hu, J.R. Wang, G. J. He, Y. Shi, Y. Li, W. Liu and J. Wang, *RSC Adv.*, 2016, **6**, 27944–27951.

S3. G.F. Ji, T. X. Zheng, X.C. Gao, Z. L. Liu, Sens. Actuator B, 2019, 284, 91–95.

S4. A. F. Yang, S. L. Hou, Y. Shi, G. L. Yang, D. B. Qin and B. Zhao, *Inorg. Chem.*, 2019, 58, 6356-6362.