Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting information

Table 1. BVS results of the independent Nb and V atoms in compounds $\mathbf{1}$ and $\mathbf{2}$.

$\mathrm{Compound} \mathbf{1}$	
$\mathrm{Nb}(1)$	5.05
$\mathrm{Nb}(2)$	5.19
$\mathrm{Nb}(3)$	4.92
$\mathrm{Nb}(4)$	4.25
$\mathrm{Compound} \mathbf{2}$	5.00
$\mathrm{Nb}(1)$	4.93
$\mathrm{Nb}(2)$	4.94
$\mathrm{Nb}(3)$	4.99
$\mathrm{Nb}(4)$	4.89
$\mathrm{Nb}(5)$	4.98
$\mathrm{Nb}(6)$	4.96
$\mathrm{Nb}(7)$	4.97
$\mathrm{Nb}(8)$	4.93
$\mathrm{Nb}(9)$	4.92
$\mathrm{Nb}(10)$	4.91
$\mathrm{Nb}(11)$	4.93
$\mathrm{Nb}(12)$	5.24
$\mathrm{~V}(1)$	5.12
$\mathrm{~V}(2)$	4.54
$\mathrm{~V}(3)$	T
T	

The equations used for the BVS of Nb are $\mathrm{s}=\exp [(1.911-\mathrm{r}) / 0.37]$, while the equations used for the BVS of V are $\mathrm{s}=\exp [(1.803-\mathrm{r}) / 0.37] .{ }^{1}$ The BVS of $V(3)$ is relatively lower than those of $V(1)$ and $V(2)$, which is caused by the disorder of $\mathrm{V}(3)$.

Fig. s1. IR spectra of compounds $\mathbf{1}$ and $\mathbf{2}$.

Fig. s2. Experimental and simulated XRD patterns of compounds $\mathbf{1}$ and $\mathbf{2}$.

Fig. s3. Solid state UV-Vis spectra of compounds $\mathbf{1}$ and $\mathbf{2}$.

Fig. s4 the RhB photocatalytic degradation performance over compound $\mathbf{1}$.

Fig. s5. (a Time course of H 2 evolution from 50 mg of $0.1 \% \mathrm{Pt}$ loaded photocatalyst compound 1 under 300 W Xe-lamp irradiation in 100 mL of aqueous solution containing $10 \mathrm{vol} \%$ methanol solution. (b) Time course of the total H 2 evolution in 6 hours.

Fig. s6 Fig. $2 \mathrm{H}_{2}$-evolution upon Xe-lamp irradiation of 10 mg of $0.1 \% \mathrm{Pt}$ loaded PONb catalysts in $100 \mathrm{~mL} \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ solution $(10 \%$ $\mathrm{v} / \mathrm{v})$.

I

Scheme s1. Schematic illustration of the proposed reaction mechanism for the styrene oxidation reaction.

References:

1. I. D. Brown and D. Altermatt, Acta. Cryst. , 1985, B41, 244.
